Generation of terahertz radiation by beating of two color lasers in hot clustered plasma with step density profile

2019 ◽  
Vol 1 (2) ◽  
pp. 025012
Author(s):  
Shivani Vij ◽  
Niti Kant
2015 ◽  
Vol 22 (6) ◽  
pp. 063106 ◽  
Author(s):  
Manoj Kumar ◽  
Vipin Kumar Tripathi ◽  
Young Uk Jeong

2017 ◽  
Vol 35 (3) ◽  
pp. 528-533 ◽  
Author(s):  
K.L. Mann ◽  
V. Sajal ◽  
N.K. Sharma

AbstractA scheme of resonant terahertz (THz) radiation generation by non-linear beating of two lasers in hot magnetized plasma with step density profile is investigated. Beating lasers of frequency difference ω1 − ω2 ≈ ωp(~1 THz) is incident obliquely on plasma surface and exerts non-linear ponderomotive force on plasma electrons. The plasma electrons start oscillating in the plane of incidence and give rise to space charge field to maintain plasma neutrality. In turn, both ponderomotive force and space charge field excites a non-linear surface current, responsible for THz radiation generation on the reflection side. The coupling between plasma wave and electromagnetic wave present (inside the plasma as well as on reflection side) becomes stronger in the presence of the transverse DC magnetic field. THz radiation amplitude is optimized at an angle of incidence θ ~ 50–70°.


1997 ◽  
Vol 91 (4) ◽  
pp. 761-767 ◽  
Author(s):  
D. HENDERSON ◽  
S. SOKOŁOWSKI ◽  
R. ZAGORSKI ◽  
A. TROKHYMCHUK

1981 ◽  
Vol 64 (11) ◽  
pp. 68-74
Author(s):  
Isamu Nagano ◽  
Masayoshi Mambo ◽  
Tetsuo Fukami ◽  
Koji Namba ◽  
Iwane Kimura

2020 ◽  
Vol 92 (2) ◽  
pp. 20502
Author(s):  
Behrokh Beiranvand ◽  
Alexander S. Sobolev ◽  
Anton V. Kudryashov

We present a new concept of the thermoelectric structure that generates microwave and terahertz signals when illuminated by femtosecond optical pulses. The structure consists of a series array of capacitively coupled thermocouples. The array acts as a hybrid type microwave transmission line with anomalous dispersion and phase velocity higher than the velocity of light. This allows for adding up the responces from all the thermocouples in phase. The array is easily integrable with microstrip transmission lines. Dispersion curves obtained from both the lumped network scheme and numerical simulations are presented. The connection of the thermocouples is a composite right/left-handed transmission line, which can receive terahertz radiation from the transmission line ports. The radiation of the photon to the surface of the thermocouple structure causes a voltage difference with the bandwidth of terahertz. We examined a lossy composite right/left-handed transmission line to extract the circuit elements. The calculated properties of the design are extracted by employing commercial software package CST STUDIO SUITE.


2018 ◽  
Vol 13 (1) ◽  
pp. 13-24
Author(s):  
A. V. Arzhannikov ◽  
◽  
P. V Kalinin ◽  
E. S. Sandalov ◽  
S. L. Sinitsky ◽  
...  

2020 ◽  
Vol 13 (11) ◽  
pp. 112007
Author(s):  
Joel Edouard Nkeck ◽  
Xavier Ropagnol ◽  
Riad Nechache ◽  
François Blanchard

Sign in / Sign up

Export Citation Format

Share Document