charge field
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 21)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
pp. 110-117
Author(s):  
A. Tsudik ◽  
A. Glushkov ◽  
V. Ternovsky ◽  
P. Zaichko

The advanced results of computing the dynamical and topological invariants (correlation dimensions values, embedding, Kaplan-York dimensions, Lyapunov’s exponents, Kolmogorov entropy etc) of the dynamics time series of the  relativistic backward-wave tube with accounting for  dissipation and space charge field and other effects are presented for chaotic and hyperchaotic regimes. It is solved a system of equations for unidimensional relativistic electron phase and field unidimensional complex amplitude.  The data obtained make more exact earlier presented preliminary data for  dynamical and topological invariants of the relativistic backward-wave tube dynamics in  chaotic regimes and allow to describe a scenario of transition to chaos in temporal dynamics.   


2021 ◽  
Vol 36 (32) ◽  
Author(s):  
M. Z. Bhatti ◽  
Z. Yousaf ◽  
T. Ashraf

This work probes the influence of charge field on the unique stellar structure, regarded as gravastar, under the corrections of [Formula: see text] theory, i.e. [Formula: see text] theory, where [Formula: see text] is named as Gauss–Bonnet invariant. The gravastar has also been recognized as an alternate candidate of black hole structure and is illustrated by three distinct regions termed as (1) the exterior (2) the intermediate thin shell (3) the interior domain. We discussed the mathematical solutions for each of three regions separately with the assistance of different equation-of-states (EoS). The exterior charged vacuum domain is expressed by the Reissner–Nordström solution. The central region is illustrated by the EoS, i.e. a positive pressure of ultra-relativistic matter is equal to the energy density. Whereas, the interior domain reflects that the negative pressure is equal to energy density and manifests a non-attractive force over the central spherical shell. We deduce that in the context of [Formula: see text] theory, the nonsingular charged model with distinct physical features, such as energy, length, entropy, is physically viable and consistent.


Author(s):  
Yu Wang ◽  
Peng Tan ◽  
Zhongxiang Zhou ◽  
Xiaolin Huang ◽  
Chengpeng Hu ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Yi Wen ◽  
Xiao-jie Xu ◽  
Meng-ling Tao ◽  
Xiao-fei Lu ◽  
Xiao-chuan Deng ◽  
...  

Abstract A 13.5 kV 4H-SiC PiN rectifier with a considerable active area of 0.1 cm2 is fabricated in this paper. Charge-field-modulated junction termination extension (CFM-JTE) has been proposed for satisfying the requirement of ultra-high reverse voltage, which enlarges the JTE dose tolerance window, making it approximately 2.8 times that of the conventional two-zone JTE. Besides, the CFM-JTE can be implemented through the conventional two-zone JTE process. The measured forward current is up to 100 A @ VF = 5.2 V in the absence of carrier lifetime enhancement technology. The CFM-JTE structure accomplishes 96% of the theoretical breakdown voltage of the parallel plane junction with a relatively small terminal area of 400 μm, which contributes to achieving the Baliga’s figure of merit of 58.8 GW/cm2.


2020 ◽  
Vol 27 (9) ◽  
pp. 093104
Author(s):  
Ping Wu ◽  
Jun Sun ◽  
Yibing Cao ◽  
Zhiqiang Fan ◽  
Changhua Chen

Sign in / Sign up

Export Citation Format

Share Document