Fault Tolerance and Noise Immunity in Freespace Diffractive Optical Neural Networks

Author(s):  
Soumyashee Soumyaprakash Panda ◽  
Ravi Hegde

Abstract Free-space diffractive optical networks are a class of trainable optical media that are currently being explored as a novel hardware platform for neural engines. The training phase of such systems is usually performed in a computer and the learned weights are then transferred onto optical hardware ("ex-situ training"). Although this process of weight transfer has many practical advantages, it is often accompanied by performance degrading faults in the fabricated hardware. Being analog systems, these engines are also subject to performance degradation due to noises in the inputs and during optoelectronic conversion. Considering diffractive optical networks (DON) trained for image classification tasks on standard datasets, we numerically study the performance degradation arising out of weight faults and injected noises and methods to ameliorate these effects. Training regimens based on intentional fault and noise injection during the training phase are only found marginally successful at imparting fault tolerance or noise immunity. We propose an alternative training regimen using gradient based regularization terms in the training objective that are found to impart some degree of fault tolerance and noise immunity in comparison to injection based training regimen.

2018 ◽  
Vol 9 ◽  
pp. 2845-2854 ◽  
Author(s):  
Zhenyin Hai ◽  
Mohammad Karbalaei Akbari ◽  
Zihan Wei ◽  
Danfeng Cui ◽  
Chenyang Xue ◽  
...  

Although 2D layered nanomaterials have been intensively investigated towards their application in energy conversion and storage devices, their disadvantages have rarely been explored so far especially compared to their 3D counterparts. Herein, WO3·nH2O (n = 0, 1, 2), as the most common and important electrochemical and electrochromic active nanomaterial, is synthesized in 3D and 2D structures through a facile hydrothermal method, and the disadvantages of the corresponding 2D structures are examined. The weakness of 2D WO3·nH2O originates from its layered structure. X-ray diffraction and scanning electron microscopy analyses of as-grown WO3·nH2O samples suggest a structural transition from 2D to 3D upon temperature increase. 2D WO3·nH2O easily generates structural instabilities by 2D intercalation, resulting in a faster performance degradation, due to its weak interlayer van der Waals forces, even though it outranks the 3D network structure in terms of improved electronic properties. The structural transformation of 2D layered WO3·nH2O into 3D nanostructures is observed via ex situ Raman measurements under electrochemical cycling experiments. The proposed degradation mechanism is confirmed by the morphology changes. The work provides strong evidence for and in-depth understanding of the weakness of 2D layered nanomaterials and paves the way for further interlayer reinforcement, especially for 2D layered transition metal oxides.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Xianyong Li ◽  
Yajun Du ◽  
Yongquan Fan

As power grids and optical interconnection networks are interdependent, the reliabilities of the optical networks are critical issues in power systems. The optical networks hold prominent performance including wide bandwidth, low loss, strong anti-interference capability, high fidelity, and reliable performance. They are regarded as promising alternatives to electrical networks for parallel processing. This paper is aimed at taking the first step in understanding the communication efficiencies of optical networks. For that purpose, on optical networks, we propose a series of novel notions including communication pattern, r -communication graph, reduced diameter, enhanced connectivity, r -diameter, and r -connectivity. Using these notions, we determine that the r -diameter and r -connectivity of the optical n -dimensional hypercube network are n / r and n 1 + n 2 + ⋯ + n r , respectively. Since the parameter r is variable, we can adjust different values of r on the basis of the wavelength resources and load of the optical networks, achieving enhanced communication efficiencies of these networks. Compared with the electric n -dimensional hypercube network, the proposed communication pattern on the optical hypercube network not only reduces the maximum communication delay of the conventional electrical hypercube significantly but also improves its fault tolerance remarkably.


Author(s):  
Negin Mohajeri ◽  
Behzad Ebrahimi ◽  
Massoud Dousti

In this paper, we propose a high-precision memristive neural network with neurons implemented by complementary metal oxide semiconductor (CMOS) inverters. Regarding the process variations in the memristors and the sensitivity of the memristive crossbar structure to these fluctuations, the read operation with repetitive pulses and feedback-based write in the memristors are used to implement the neural networks trained by the ex-situ method. Moreover, accurate modeling of the neuron circuit (CMOS inverter) and decreasing the mismatch between trained weights and the limited memristances fill the gap between simulation and implementation. To employ physical constraints based on the memristor framework during the training phase, a linear function is utilized to map the trained weights to the acceptable range of memristances after the training phase. To solve the vanishing gradient problem due to the use of the tanh function as an activation function and for better learning of the network, some measures are taken. Moreover, fin field-effect transistor (FinFET) technology is used to prevent the reduction of the accuracy of the inverter-based memristive neural networks due to the process variations. Overall, our implementation improves the speed, area, power-delay product (PDP), and mean square error (MSE) of the training stage by 91.43%, 95.06%, 48.29% and 81.64%, respectively.


Author(s):  
Jingjing Zhang ◽  
Yingyao Rong ◽  
Jiannong Cao ◽  
Chunming Rong ◽  
Jing Bian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document