Highly Siderophile Elements and Coupled Fe-Os Isotope Signatures in the Temagami Iron Formation, Canada: Possible Signatures of Neoarchean Seawater Chemistry and Earth's Oxygenation History

Astrobiology ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 924-939
Author(s):  
Toni Schulz ◽  
Sebastian Viehmann ◽  
Dominik C. Hezel ◽  
Christian Koeberl ◽  
Michael Bau
Author(s):  
Wolf Uwe Reimold ◽  
Toni Schulz ◽  
Stephan König ◽  
Christian Koeberl ◽  
Natalia Hauser ◽  
...  

ABSTRACT This contribution is concerned with the debated origin of the impact melt rock in the central uplift of the world’s largest confirmed impact structure—Vredefort (South Africa). New major- and trace-element abundances, including those of selected highly siderophile elements (HSEs), Re-Os isotope data, as well as the first Se isotope and Se-Te elemental systematics are presented for the felsic and mafic varieties of Vredefort impact melt rock known as “Vredefort Granophyre.” In addition to the long-recognized “normal” (i.e., felsic, >66 wt% SiO2) granophyre variety, a more mafic (<66 wt% SiO2) impact melt variety from Vredefort has been discussed for several years. The hypothesis that the mafic granophyre was formed from felsic granophyre through admixture (assimilation) of a mafic country rock component that then was melted and assimilated into the superheated impact melt has been pursued here by analysis of the two granophyre varieties, of the Dominion Group lava (actually metalava), and of epidiorite mafic country rock types. Chemical compositions, including high-precision isotope dilution–derived concentrations of selected highly siderophile elements (Re, Os, Ir, Pt, Se, Te), and Re-Os and Se isotope data support this hypothesis. A first-order estimate, based on these data, suggests that some mafic granophyre may have resulted from a significant admixture (assimilation) of epidiorite to felsic granophyre. This is in accordance with the findings of an earlier investigation using conventional isotope (Sr-Nd-Pb) data. Moreover, these outcomes are in contrast to a two-stage emplacement model for Vredefort Granophyre, whereby a mafic phase of impact melt, derived by differentiation of a crater-filling impact melt sheet, would have been emplaced into earlier-deposited felsic granophyre. Instead, all chemical and isotopic evidence so far favors formation of mafic granophyre by local assimilation of mafic country rock—most likely epidiorite—by a single intrusive impact melt phase, which is represented by the regionally homogeneous felsic granophyre.


2014 ◽  
Vol 400 ◽  
pp. 33-44 ◽  
Author(s):  
Claudio Marchesi ◽  
Christopher W. Dale ◽  
Carlos J. Garrido ◽  
D. Graham Pearson ◽  
Delphine Bosch ◽  
...  

Lithos ◽  
2020 ◽  
Vol 368-369 ◽  
pp. 105583
Author(s):  
Chen Chen ◽  
Ben-Xun Su ◽  
Yan Xiao ◽  
İbrahim Uysal ◽  
Wei Lin ◽  
...  

Science ◽  
2010 ◽  
Vol 330 (6010) ◽  
pp. 1527-1530 ◽  
Author(s):  
William F. Bottke ◽  
Richard J. Walker ◽  
James M. D. Day ◽  
David Nesvorny ◽  
Linda Elkins-Tanton

Core formation should have stripped the terrestrial, lunar, and martian mantles of highly siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances. Late accretion may offer a solution, provided that ≥0.5% Earth masses of broadly chondritic planetesimals reach Earth’s mantle and that ~10 and ~1200 times less mass goes to Mars and the Moon, respectively. We show that leftover planetesimal populations dominated by massive projectiles can explain these additions, with our inferred size distribution matching those derived from the inner asteroid belt, ancient martian impact basins, and planetary accretion models. The largest late terrestrial impactors, at 2500 to 3000 kilometers in diameter, potentially modified Earth’s obliquity by ~10°, whereas those for the Moon, at ~250 to 300 kilometers, may have delivered water to its mantle.


Sign in / Sign up

Export Citation Format

Share Document