seawater chemistry
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 67)

H-INDEX

39
(FIVE YEARS 6)

2021 ◽  
Vol 8 ◽  
Author(s):  
Susann Rossbach ◽  
Felix Ivo Rossbach ◽  
Verena Häussermann ◽  
Günter Försterra ◽  
Jürgen Laudien

Cold-water corals (CWC) can be found throughout a wide range of latitudes (79°N–78°S). Since they lack the photosymbiosis known for most of their tropical counterparts, they may thrive below the euphotic zone. Consequently, their growth predominantly depends on the prevalent environmental conditions, such as general food availability, seawater chemistry, currents, and temperature. Most CWC communities live in regions that will face CaCO3 undersaturation by the end of the century and are thus predicted to be threatened by ocean acidification (OA). This scenario is especially true for species inhabiting the Chilean fjord system, where present-day carbonate water chemistry already reaches values predicted for the end of the century. To understand the effect of the prevailing environmental conditions on the biomineralization of the CWC Tethocyathus endesa, a solitary scleractinian widely distributed in the Chilean Comau Fjord, a 12-month in situ experiment was conducted. The in situ skeletal growth of the test corals was assessed at two sites using the buoyant weight method. Sites were chosen to cover the naturally present carbonate chemistry gradient, with pH levels ranging between 7.90 ± 0.01 (mean ± SD) and 7.70 ± 0.02, and an aragonite saturation (Ωarag) between 1.47 ± 0.03 and 0.98 ± 0.05. The findings of this study provide one of the first in situ growth assessments of a solitary CWC species, with a skeletal mass increase of 46 ± 28 mg per year and individual, at a rate of 0.03 ± 0.02% day. They also indicate that, although the local seawater chemistry can be assumed to be unfavorable for calcification, growth rates of T. endesa are comparable to other cold-water scleractinians in less corrosive waters (e.g., Lophelia pertusa in the Mediterranean Sea).


Author(s):  
Marcus M. Key ◽  
Patrick N. Wyse Jackson ◽  
Catherine M. Reid

AbstractTrepostome bryozoan skeletalisation did not passively respond to changes in seawater chemistry associated with calcite-aragonite seas. According to Stanley and others, trepostome bryozoans were passive hypercalcifiers. However, if this was the case, we would expect their degree of calcitic colony calcification to have decreased across the Calcite I Sea to the Aragonite II Sea at its transition in the Middle Mississippian. Data from the type species of all 184 trepostome genera from the Early Ordovician to the Late Triassic were utilised to calculate the Bryozoan Skeletal Index (BSI) as a proxy for the degree of calcification. BSI values and genus-level diversity did not decrease across the transition from the Calcite I Sea to the Aragonite II Sea. Nor were there any changes in the number of genus originations and extinctions. This suggests that trepostome bryozoans were not passive hypercalcifiers but active biomineralisers that controlled the mineralogy and robustness of their skeletons regardless of changes in seawater chemistry.


2021 ◽  
Vol 14 (10) ◽  
pp. 5999-6023
Author(s):  
Yoshiki Kanzaki ◽  
Dominik Hülse ◽  
Sandra Kirtland Turner ◽  
Andy Ridgwell

Abstract. The preservation of calcium carbonate in marine sediments is central to controlling the alkalinity balance of the ocean and, hence, the ocean–atmosphere partitioning of CO2. To successfully address carbon cycle–climate dynamics on geologic (≫1 kyr) timescales, Earth system models then require an appropriate representation of the primary controls on CaCO3 preservation. At the same time, marine sedimentary carbonates represent a major archive of Earth history, as they have the potential to preserve how seawater chemistry, isotopic composition, and even properties of planktic and benthic ecosystems, change with time. However, changes in preservation and even chemical erosion of previously deposited CaCO3, along with the biogenic reworking of upper portions of sediments, whereby sediment particles are translocated both locally and nonlocally between different depths in the sediments, all act to distort the recorded signal. Numerical models can aid in recovering what the “true” environmental changes might have been, but only if they appropriately account for these processes. Building on a classical 1-D reaction-transport framework, we present a new diagenetic model – IMP (Implicit model of Multiple Particles (and diagenesis)) – that simulates biogeochemical transformations in carbonate-hosted proxy signals by allowing for populations of solid carbonate particles to possess different physicochemical characteristics such as isotopic value, solubility and particle size. The model also utilizes a variable transition matrix to implement different styles of bioturbation. We illustrate the utility of the model for deciphering past environmental changes using several hypothesized transitions of seawater proxies obscured by sediment mixing and chemical erosion. To facilitate the use of IMP, we provide the model in Fortran, MATLAB and Python versions. We described IMP with integration into Earth system models in mind, and we present the description of this coupling of IMP with the “cGENIE.muffin” model in a subsequent paper.


Author(s):  
Joachim A. R. Katchinoff ◽  
Drew D. Syverson ◽  
Noah J. Planavsky ◽  
Erica S. J. Evans ◽  
Alan D. Rooney
Keyword(s):  

2021 ◽  
pp. 120565
Author(s):  
Pan Zhang ◽  
Kang-Jun Huang ◽  
Chongguang Luo ◽  
Heng Chen ◽  
Zhian Bao ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
Mirosław Słowakiewicz ◽  
Amlan Banerjee ◽  
Sarbani Patranabis-Deb ◽  
Gautam Kumar Deb ◽  
Maurice E. Tucker

Abstract Remnants of some of the planet’s most ancient life forms, stromatolites in the late Mesoproterozoic sea of the Chattisgarh Basin, India, preserve a conspicuous sinuous pattern. They occur as successive biostromes, 10–30 cm thick, separated by 2–5-cm-thick marly layers and discrete bioherms up to several metres thick and 20 m across. Stromatolite columns in the Chandi Formation are 5–10 cm high, sinuous, inclined and straight, with both branched and non-branched types. These stromatolites are composed of calcite micrite and show well defined light and dark laminae with evidence of erosion between lamina sets. The column sinuosity probably originated as a response to changes in direction and strength of currents. Successive flat beds of stromatolite (biostromes), separated by marl/clay horizons, impart a rhythmic pattern to the succession. The Chandi sinuous stromatolite columns resemble those occurring in China, North America and Siberia, of a comparable age, suggesting that similar marine conditions of stromatolite formation might have been operating in the late Mesoproterozoic seas worldwide. However, the petrographic and sedimentological analyses of these stromatolites indicate their development through in situ production of carbonate with some trapping and binding of detrital sediment. As a result of the presence of terrigenous material within the stromatolites, whole-rock geochemical analyses for trace elements and rare earth elements cannot be used for interpretation of seawater chemistry and the redox conditions at the time.


Author(s):  
Chelsea L. Pederson ◽  
Yuzhu Ge ◽  
Stephen W. Lokier ◽  
Peter K. Swart ◽  
Hubert Vonhof ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document