highly siderophile elements
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 29)

H-INDEX

28
(FIVE YEARS 4)

Author(s):  
Wolf Uwe Reimold ◽  
Toni Schulz ◽  
Stephan König ◽  
Christian Koeberl ◽  
Natalia Hauser ◽  
...  

ABSTRACT This contribution is concerned with the debated origin of the impact melt rock in the central uplift of the world’s largest confirmed impact structure—Vredefort (South Africa). New major- and trace-element abundances, including those of selected highly siderophile elements (HSEs), Re-Os isotope data, as well as the first Se isotope and Se-Te elemental systematics are presented for the felsic and mafic varieties of Vredefort impact melt rock known as “Vredefort Granophyre.” In addition to the long-recognized “normal” (i.e., felsic, >66 wt% SiO2) granophyre variety, a more mafic (<66 wt% SiO2) impact melt variety from Vredefort has been discussed for several years. The hypothesis that the mafic granophyre was formed from felsic granophyre through admixture (assimilation) of a mafic country rock component that then was melted and assimilated into the superheated impact melt has been pursued here by analysis of the two granophyre varieties, of the Dominion Group lava (actually metalava), and of epidiorite mafic country rock types. Chemical compositions, including high-precision isotope dilution–derived concentrations of selected highly siderophile elements (Re, Os, Ir, Pt, Se, Te), and Re-Os and Se isotope data support this hypothesis. A first-order estimate, based on these data, suggests that some mafic granophyre may have resulted from a significant admixture (assimilation) of epidiorite to felsic granophyre. This is in accordance with the findings of an earlier investigation using conventional isotope (Sr-Nd-Pb) data. Moreover, these outcomes are in contrast to a two-stage emplacement model for Vredefort Granophyre, whereby a mafic phase of impact melt, derived by differentiation of a crater-filling impact melt sheet, would have been emplaced into earlier-deposited felsic granophyre. Instead, all chemical and isotopic evidence so far favors formation of mafic granophyre by local assimilation of mafic country rock—most likely epidiorite—by a single intrusive impact melt phase, which is represented by the regionally homogeneous felsic granophyre.


2021 ◽  
Author(s):  
Robert Nicklas ◽  
James Day ◽  
Kathryn Gardner-Vandy ◽  
Arya Udry

Abstract The Earth differs from other terrestrial planets in having a substantial silica-rich continental crust with a bulk andesitic composition1. The compositional dichotomy between oceanic and continental crust is likely related to water-rich subduction processes2. Over the past decade, the discovery of meteorites with andesitic bulk compositions have demonstrated that continental-crust like compositions can be attained through partial melting of chondritic protoliths3,4,5. Here we show that a newly identified achondrite meteorite, Erg Chech (EC) 002, is a high-Mg andesite but that, unlike previous andesitic achondrites has strongly fractionated and low abundances of the highly siderophile elements (HSE), reminiscent of Earth’s upper continental crust6. The major and HSE composition of EC 002 can be explained if its asteroid parent body underwent metal-silicate equilibrium prior to silicate partial melting without losing significant volatile components. The chemistry of pyroxene grains in EC 002 suggests it approximates a parental melt composition, which cannot be produced by partial melting of pre-existing basaltic lithologies, but more likely requires a metal-free chondritic source. Erg Chech 002 likely formed by ~ 15% melting of the mantle of an alkali-undepleted differentiated asteroid. The discovery of EC 002 shows that extensive silicate differentiation after metal-silicate equilibration was already occurring in the first two million years of solar system history7, and that andesitic crustal compositions do not always require water-rich subduction processes to be produced.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 329
Author(s):  
Kreshimir N. Malitch ◽  
Inna Yu. Badanina ◽  
Elena A. Belousova ◽  
Valery V. Murzin ◽  
Tatiana A. Velivetskaya

This study presents new compositional and S-Os isotope data for primary Ru-Os sulfides within a platinum-group mineral (PGM) assemblage from placer deposits associated with the Verkh-Neivinsk massif, which is part of the mantle ophiolite association of Middle Urals (Russia). The primary nature of Ru-Os sulfides represented by laurite (RuS2)–erlichmanite (OsS2) series is supported by occurrence of euhedral inclusions of high-Mg olivine (Fo92–94) that fall within the compositional range of mantle (primitive) olivine (Fo 88–93). The sulfur isotope signatures of Ru-Os sulfides reveal a range of δ34S values from 0.3 to 3.3‰, with a mean of 2.05‰ and a standard deviation of 0.86‰ (n = 18), implying that the sulfur derived from a subchondritic source. A range of sub-chondritic initial 187Os/188Os values defined for Ru-Os sulfides (0.1173–0.1278) are clearly indicative of derivation from a sub-chondritic source. Re-depletion (TRD) ages of the Verkh-Neivinsk Ru-Os sulfides are consistent with prolonged melt-extraction processes and likely multi-stage evolution of highly siderophile elements (HSE) within the upper mantle. A single radiogenic 187Os/188Os value of 0.13459 ± 0.00002 determined in the erlichmanite is indicative of a supra-chondritic source of HSE. This feature can be interpreted as evidence of a radiogenic crustal component associated with a subduction event or as an indication of an enriched mantle source. The mineralogical and Os-isotope data point to a high-temperature origin of the studied PGM and two contrasting sources for HSE in Ru-Os sulfides of the Verkh-Neivinsk massif.


2021 ◽  
Vol 293 ◽  
pp. 379-398
Author(s):  
Marine Paquet ◽  
James M.D. Day ◽  
Arya Udry ◽  
Ruan Hattingh ◽  
Ben Kumler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document