Effects of Fruquintinib on the Pluripotency Maintenance and Differentiation Potential of Mouse Embryonic Stem Cells

Author(s):  
Hanyi Zeng ◽  
Fanke Peng ◽  
Jiachen Wang ◽  
Ru Meng ◽  
Jun Zhang
PLoS Genetics ◽  
2013 ◽  
Vol 9 (5) ◽  
pp. e1003424 ◽  
Author(s):  
Yaser Atlasi ◽  
Rubina Noori ◽  
Claudia Gaspar ◽  
Patrick Franken ◽  
Andrea Sacchetti ◽  
...  

2012 ◽  
Vol 287 (14) ◽  
pp. 10853-10862 ◽  
Author(s):  
Maud Forsberg ◽  
Katarina Holmborn ◽  
Soumi Kundu ◽  
Anders Dagälv ◽  
Lena Kjellén ◽  
...  

2011 ◽  
Vol 227 (3) ◽  
pp. 1242-1249 ◽  
Author(s):  
Paola Rebuzzini ◽  
Diana Pignalosa ◽  
Giuliano Mazzini ◽  
Riccardo Di Liberto ◽  
Antonio Coppola ◽  
...  

2021 ◽  
Author(s):  
Seong Min Kim ◽  
Eun-Ji Kwon ◽  
Yun-Jeong Kim ◽  
Young-Hyun Go ◽  
Ji-Young Oh ◽  
...  

Abstract The requirement of the Mek1 inhibitor (iMek1) during naïve pluripotency maintenance results from the activation of the Mek1-Erk1/2 (Mek/Erk) signaling pathway upon leukemia inhibitory factor (LIF) stimulation. Through a meta-analysis of previous genome-wide screening for negative regulators of naïve pluripotency, Ptpn11 (encoding the Shp2 protein, which serves both as a tyrosine phosphatase and putative adapter), was predicted as one of the key factors for the negative modulation of naïve pluripotency through LIF-dependent Jak/Stat3 signaling. Using an isogenic pair of naïve and primed mouse embryonic stem cells (mESCs), we demonstrated the differential role of Shp2 in naïve and primed pluripotency. Loss of Shp2 increased naive pluripotency by promoting Jak/Stat3 signaling and disturbed in vivo differentiation potential. In sharp contrast, Shp2 depletion significantly impeded the self-renewal of ESCs under primed culture conditions, which was concurrent with a reduction in Mek/Erk signaling. Similarly, upon treatment with an allosteric Shp2 inhibitor (iShp2), the cells sustained Stat3 phosphorylation and decoupled Mek/Erk signaling, thus replacing the use of iMek1 not only for maintenance but also for the establishment of naïve ESCs through reprogramming. Taken together, our findings highlight the differential roles of Shp2 in naïve and primed pluripotency and propose the usage of iShp2 instead of iMek1 for the efficient maintenance and establishment of naïve pluripotency.


2020 ◽  
Vol 39 (11) ◽  
pp. 1518-1527
Author(s):  
S Mohammadi Nejad ◽  
M Hodjat ◽  
SA Mousavi ◽  
M Baeeri ◽  
MA Rezvanfar ◽  
...  

Ethephon, a member of the organophosphorus compounds, is one of the most widely used plant growth regulators for artificial ripening. Although million pounds of this chemical is being used annually, the knowledge regarding its molecular toxicity is yet not sufficient. The purpose of this study was to evaluate the potential developmental toxicity of ethephon using embryonic stem cell model. The mouse embryonic stem cells (mESCs) were exposed to various concentrations of ethephon and the viability, cell cycle alteration and changes in the gene expression profile were evaluated using high-throughput RNA sequencing. Further, the effect of ethephon on neural differentiation potential was examined. The results showed that ethephon at noncytotoxic doses induced cell cycle arrest in mESCs. Gene ontology enrichment analysis showed that terms related to cell fate and organismal development, including neuron fate commitment, embryo development and cardiac cell differentiation, were markedly enriched in ethephon-treated cells. Neural induction of mESCs in the presence of ethephon was inhibited and the expression of neural genes was decreased in differentiated cells. Results obtained from this work clearly demonstrate that ethephon affects the gene expression profile of undifferentiated mESCs and prevents neural differentiation. Therefore, more caution against the frequent application of ethephon is advised.


2013 ◽  
Vol 16 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Young Cha ◽  
Sun-Hee Heo ◽  
Hee-Jin Ahn ◽  
Seong Kyu Yang ◽  
Ji-Hwan Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document