cell cycle phase
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 32)

H-INDEX

42
(FIVE YEARS 3)

Cell Reports ◽  
2022 ◽  
Vol 38 (2) ◽  
pp. 110216
Author(s):  
Tingting Qin ◽  
Brendan Mullan ◽  
Ramya Ravindran ◽  
Dana Messinger ◽  
Ruby Siada ◽  
...  

Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 210
Author(s):  
Kamal Pandey ◽  
Nar Bahadur Katuwal ◽  
Nahee Park ◽  
Jin Hur ◽  
Young Bin Cho ◽  
...  

Breast cancer remains a leading cancer burden among women worldwide. Acquired resistance of cyclin-dependent kinase (CDK) 4/6 inhibitors occurs in almost all hormone receptor (HR)-positive subtype cases, comprising 70% of breast cancers, although CDK4/6 inhibitors combined with endocrine therapy are highly effective. CDK4/6 inhibitors are not expected to cooperate with cytotoxic chemotherapy based on the basic cytotoxic chemotherapy mode of action that inhibits rapidly proliferating cells. The palbociclib-resistant preclinical model developed in the current study investigated whether the combination of abemaciclib, CDK4/6 inhibitor with eribulin, an antimitotic chemotherapy could be a strategy to overcome palbociclib-resistant HR-positive breast cancer. The current study demonstrated that sequential abemaciclib treatment following eribulin synergistically suppressed CDK4/6 inhibitor-resistant cells by inhibiting the G2/M cell cycle phase more effectively. The current study showed the significant association of the pole-like kinase 1 (PLK1) level and palbociclib resistance. Moreover, the cumulative PLK1 inhibition in the G2/M phase by each eribulin or abemaciclib proved to be a mechanism of the synergistic effect. The synergistic antitumor effect was also supported by in vivo study. The sequential combination of abemaciclib following eribulin merits further clinical trials to overcome resistance to CDK4/6 inhibitors in HR-positive breast cancer.


2021 ◽  
Author(s):  
Zhaoming Lu ◽  
Yalin Zhang ◽  
Yujia Xu ◽  
Huiyun Wei ◽  
Wen Zhao ◽  
...  

Abstract This study aims to explore the anti-tumor activity of Sulforaphane (SFN) alone and combined with Akt/mTOR pathway inhibitors as well as the potential molecular mechanism in esophageal squamous cell carcinoma (ESCC). MTT assay, clone formation experiment, wound healing assays, flow cytometry, Western blot and xenograft experiment were used to test the effects and molecular mechanism of SFN alone or combined with Akt/mTOR inhibitors on proliferation, migration, cell cycle phase, apoptosis of ESCC cells and tumor growth, respectively. The results showed that SFN significantly inhibited the viability and induced apoptosis of ECa109 and EC9706 cells in a dose-dependent manner by increasing the expression of the apoptotic proteins Cleaved-caspase 9. SFN combined with PP242, but not MK2206 and RAD001, had synergetic inhibition effects on the proliferation of ESCC cells. Moreover, the combination of SFN and PP242 had better inhibiting efficiency on clone formation, migratory, cell cycle phase and the growth of xenografts of ESCC cells, as well as the more powerful apoptosis-inducing effects on ESCC cells. Results of protein expression showed that PP242 abrogated the promotion effects of SFN on p-p70S6K (Thr389) and p-Akt (Ser473). These foundings demonstrated PP242 enhances the anti-tumor activity of SFN by blocking the activation of Akt/mTOR pathway by SFN in ESCC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christophe Desterke ◽  
Annelise Bennaceur-Griscelli ◽  
Ali G. Turhan

Abstract Background During aging, hematopoietic stem cells (HSC) lose progressively both their self-renewal and differentiation potential. The precise molecular mechanisms of this phenomenon are not well established. To uncover the molecular events underlying this event, we have performed a bioinformatics analysis of 650 single-cell transcriptomes. Methods Single-cell transcriptome analyses of expression heterogeneity, cell cycle, and cell trajectory in human cell compartment enriched in hematopoietic stem cell compartment were investigated in the bone marrow according to the age of the donors. Identification of aging-related nodules was identified by weighted correlation network analysis in this primitive compartment. Results The analysis of single-cell transcriptomes allowed to uncover a major upregulation of EGR1 in human-aged lineage−CD34+CD38− cells which present cell cycle dysregulation with reduction of G2/M phase according to less expression of CCND2 during S phase. EGR1 upregulation in aging hematopoietic stem cells was found to be independent of cell cycle phases and gender. EGR1 expression trajectory in aged HSC highlighted a signature enriched in hematopoietic and immune disorders with the best induction of AP-1 complex and quiescence regulators such as EGR1, BTG2, JUNB, and NR41A. Sonic Hedgehog-related TMEM107 transmembrane molecule followed also EGR1 cell trajectory. EGR1-dependent gene weighted network analysis in human HSC-associated IER2 target protein-specific regulators of PP2A activity, IL1B, TNFSF10 ligands, and CD69, SELP membrane molecules in old HSC module with immune and leukemogenic signature. In contrast, for young HSC which were found with different cell cycle phase progression, its specific module highlighted upregulation of HIF1A hypoxic factor, PDE4B immune marker, DRAK2 (STK17B) T cell apoptosis regulator, and MYADM myeloid-associated marker. Conclusion EGR1 was found to be connected to the aging of human HSC and highlighted a specific cell trajectory contributing to the dysregulation of an inflammatory and leukemia-related transcriptional program in aged human HSCs. EGR1 and its program were found to be connected to the aging of human HSC with dissociation of quiescence property and cell cycle phase progression in this primitive hematopoietic compartment.


2021 ◽  
Vol 1 ◽  
Author(s):  
David W. James ◽  
Andrew Filby ◽  
M. Rowan Brown ◽  
Huw D. Summers ◽  
Lewis W. Francis ◽  
...  

Many chemotherapeutic drugs target cell processes in specific cell cycle phases. Determining the specific phases targeted is key to understanding drug mechanism of action and efficacy against specific cancer types. Flow cytometry experiments, combined with cell cycle phase and division round specific staining, can be used to quantify the current cell cycle phase and number of mitotic events of each cell within a population. However, quantification of cell interphase times and the efficacy of cytotoxic drugs targeting specific cell cycle phases cannot be determined directly. We present a data driven computational cell population model for interpreting experimental results, where in-silico populations are initialized to match observable results from experimental populations. A two-stage approach is used to determine the efficacy of cytotoxic drugs in blocking cell-cycle phase transitions. In the first stage, our model is fitted to experimental multi-parameter flow cytometry results from untreated cell populations to identify parameters defining probability density functions for phase transitions. In the second stage, we introduce a blocking routine to the model which blocks a percentage of attempted transitions between cell-cycle phases due to therapeutic treatment. The resulting model closely matches the percentage of cells from experiment in each cell-cycle phase and division round. From untreated cell populations, interphase and intermitotic times can be inferred. We then identify the specific cell-cycle phases that cytotoxic compounds target and quantify the percentages of cell transitions that are blocked compared with the untreated population, which will lead to improved understanding of drug efficacy and mechanism of action.


2021 ◽  
Author(s):  
Helle Samdal ◽  
Siv A. Hegre ◽  
Konika Chawla ◽  
Nina-Beate Liabakk ◽  
Per A. Aas ◽  
...  

AbstractLong noncoding RNAs (lncRNAs) are involved in the regulation of cell cycle, although only a few have been functionally characterized. By combining RNA sequencing and ChIP sequencing of cell cycle synchronized HaCaT cells we have previously identified lncRNAs highly enriched for cell cycle functions. Based on a cyclic expression profile and an overall high correlation to histone 3 lysine 4 trimethylation (H3K4me3) and RNA polymerase II (Pol II) signals, the lncRNA SNHG26 was identified as a top candidate. In the present study we report that downregulation of SNHG26 affects mitochondrial stress, proliferation, cell cycle phase distribution, and gene expression in cis- and in trans, and that this effect is reversed by upregulation of SNHG26. We also find that the effect on cell cycle phase distribution is cell type specific and stable over time. Results indicate an oncogenic role of SNHG26, possibly by affecting cell cycle progression through the regulation of downstream MYC-responsive genes.


2021 ◽  
Author(s):  
Zhuoyi Liang ◽  
Vipul Kumar ◽  
Marie Le Bouteiller ◽  
Jeffrey Zurita ◽  
Josefin Kenrick ◽  
...  

AbstractClassical nonhomologous end-joining (C-NHEJ) repairs DNA double-stranded breaks (DSBs) throughout interphase but predominates in G1-phase when homologous recombination is unavailable. Complexes containing the Ku70/80 (“Ku”) and XRCC4/Ligase IV (Lig4) core C-NHEJ factors are required, respectively, for sensing and joining DSBs. While XRCC4/Ligase IV are absolutely required for joining RAG1/2-endonucease (“RAG”)-initiated DSBs during V(D)J recombination in G1-phase progenitor lymphocytes, cycling cells deficient for XRCC4/Ligase IV also can join chromosomal DSBs by alternative end-joining (A-EJ) pathways. Restriction of V(D)J recombination by XRCC4/Ligase IV-mediated joining has been attributed to RAG shepherding V(D)J DSBs exclusively into the C-NHEJ pathway. Here, we report that A-EJ of DSB ends generated by RAG1/2, Cas9:gRNA and Zinc finger endonucleases in Lig4-deficient G1-arrested progenitor B cell lines is suppressed by Ku. Thus, while diverse DSBs remain largely as free broken ends in Lig4-deficient G1-arrested progenitor B cells, deletion of Ku70 increases DSB rejoining and translocation levels to those observed in Ku70-deficient counterparts. Correspondingly, while RAG-initiated V(D)J DSB joining is abrogated in Lig4-deficient G1-arrested progenitor B cell lines, joining of RAG-generated DSBs in Ku70-deficient and Ku70/Lig4 double-deficient lines occurs through a translocation-like A-EJ mechanism. Thus, in G1-arrested, Lig4-deficient progenitor B cells are functionally end-joining suppressed due to Ku-dependent blockage of A-EJ, potentially, in association with G1-phase down-regulation of Ligase1. Finally, we suggest that differential impacts of Ku-deficiency versus Lig4-deficiency on V(D)J recombination, neuronal apoptosis, and embryonic development results from Ku-mediated inhibition of A-EJ in the G1 cell cycle phase in Lig4-defcient developing lymphocyte and neuronal cells.Significance StatementAlternative end-joining (A-EJ) is implicated in oncogenic translocations and mediating DNA double-strand break (DSB) repair in cycling cells when classical nonhomologous endjoining (C-NHEJ) factors of the C-NHEJ Ligase complex are absent. However, V(D)J recombination-associated DSBs that occur in G1 cell cycle-phase progenitor lymphocytes are joined exclusively by the C-NHEJ pathway. Until now, however, the overall mechanisms that join general DSBs in G1-phase progenitor B cells had not been fully elucidated. Here, we report that Ku, a core C-NHEJ double-strand break recognition complex, directs repair of a variety of different targeted DSBs towards C-NHEJ and suppresses A-EJ in G1-phase cells. We suggest this Ku activity explains how Ku-deficiency can rescue the neuronal development and embryonic lethality phenotype of Ligase 4-deficient mice.


Sign in / Sign up

Export Citation Format

Share Document