scholarly journals Physical Links Between the Nuclear Envelope Protein Mps3, Three Alternate Replication Factor C Complexes, and a Variant Histone in Saccharomyces cerevisiae

2012 ◽  
Vol 31 (6) ◽  
pp. 917-924 ◽  
Author(s):  
Jared Haas ◽  
Amanda Lemoncelli ◽  
Christina Morozov ◽  
Karl Franke ◽  
John Dominder ◽  
...  
Genetics ◽  
1996 ◽  
Vol 142 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Michael A McAlear ◽  
K Michelle Tuffo ◽  
Connie Holm

We used genetic and biochemical techniques to characterize the phenotypes associated with mutations affecting the large subunit of replication factor C (Cdc44p or Rfc1p) in Saccharomyces cerevisiae. We demonstrate that Cdc44p is required for both DNA replication and DNA repair in vivo. Cold-sensitive cdc44 mutants experience a delay in traversing S phase at the restrictive temperature following alpha factor arrest; although mutant cells eventually accumulate with a G2/M DNA content, they undergo a cell cycle arrest and initiate neither mitosis nor a new round of DNA synthesis. cdc44 mutants also exhibit an elevated level of spontaneous mutation, and they are sensitive both to the DNA damaging agent methylmethane sulfonate and to exposure to UV radiation. After exposure to UV radiation, cdc44 mutants at the restrictive temperature contain higher levels of single-stranded DNA breaks than do wild-type cells. This observation is consistent with the hypothesis that Cdc44p is involved in repairing gaps in the DNA after the excision of damaged bases. Thus, Cdc44p plays an important role in both DNA replication and DNA repair in vivo.


1996 ◽  
Vol 16 (9) ◽  
pp. 4614-4620 ◽  
Author(s):  
A K Adams ◽  
C Holm

To investigate the relationship between the DNA replication apparatus and the control of telomere length, we examined the effects of several DNA replication mutations on telomere length in Saccharomyces cerevisiae. We report that a mutation in the structural gene for the large subunit of DNA replication factor C (cdc44/rfc1) causes striking increases in telomere length. A similar effect is seen with mutations in only one other DNA replication gene: the structural gene for DNA polymerase alpha (cdc17/pol1) (M.J. Carson and L. Hartwell, Cell 42:249-257, 1985). For both genes, the telomere elongation phenotype is allele specific and appears to correlate with the penetrance of the mutations. Furthermore, fluorescence-activated cell sorter analysis reveals that those alleles that cause elongation also exhibit a slowing of DNA replication. To determine whether elongation is mediated by telomerase or by slippage of the DNA polymerase, we created cdc17-1 mutants carrying deletions of the gene encoding the RNA component of telomerase (TLC1). cdc17-1 strains that would normally undergo telomere elongation failed to do so in the absence of telomerase activity. This result implies that telomere elongation in cdc17-1 mutants is mediated by the action of telomerase. Since DNA replication involves transfer of the nascent strand from polymerase alpha to replication factor C (T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1950-1960, 1991; T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1961-1968, 1991; S. Waga and B. Stillman, Nature [London] 369:207-212, 1994), one possibility is that this step affects the regulation of telomere length.


Sign in / Sign up

Export Citation Format

Share Document