A Comparative Study on Aerobic Granular Sludge and Effluent Suspended Solids in a Sequence Batch Reactor

2008 ◽  
Vol 25 (4) ◽  
pp. 577-584 ◽  
Author(s):  
Z.H. Li ◽  
T. Kuba ◽  
T. Kusuda ◽  
X.C. Wang
2015 ◽  
Vol 13 (3) ◽  
pp. 746-757 ◽  
Author(s):  
Bei Long ◽  
Chang-zhu Yang ◽  
Wen-hong Pu ◽  
Jia-kuan Yang ◽  
Guo-sheng Jiang ◽  
...  

Mature aerobic granular sludge (AGS) was inoculated for the start-up of a pilot-scale sequencing batch reactor for the treatment of high concentration solvent recovery raffinate (SRR). The proportion of simulated wastewater (SW) (w/w) in the influent gradually decreased to zero during the operation, while volume of SRR gradually increased from zero to 10.84 L. AGS was successfully domesticated after 48 days, which maintained its structure during the operation. The domesticated AGS was orange, irregular, smooth and compact. Sludge volume index (SVI), SV30/SV5, mixed liquor volatile suspended solids/mixed liquor suspended solids (MLVSS/MLSS), extracellular polymeric substances, proteins/polysaccharides, average particle size, granulation rate, specific oxygen utilization rates (SOUR)H and (SOUR)N of AGS were about 38 mL/g, 0.97, 0.52, 39.73 mg/g MLVSS, 1.17, 1.51 mm, 96.66%, 47.40 mg O2/h g volatile suspended solids (VSS) and 8.96 mg O2/h g VSS, respectively. Good removal effect was achieved by the reactor. Finally, the removal rates of chemical oxygen demand (COD), total inorganic nitrogen (TIN), NH4+-N and total phosphorus (TP) were more than 98%, 96%, 97% and 97%, respectively. The result indicated gradually increasing the proportion of real wastewater in influent was a useful domestication method, and the feasibility of AGS for treatment of high C/N ratio industrial wastewater.


2011 ◽  
Vol 255-260 ◽  
pp. 3037-3041 ◽  
Author(s):  
Kui Zu Su ◽  
Chang Wang ◽  
Hui Fang

Aerobic granules were cultivated in the sequencing batch reactor at 15-25°C, pH 7.0 ± 0.1. Settling time decreased from 5 minutes to 1 minute gradually. As increasing the chemical oxygen demand (COD) and NH3-N in influent, COD removal efficiency and mixed liquid suspended solids of the reactor increased. Sludge volume index decreased continuously for a few days and then stabilized at 22 ml g-1. Selective pressure induced by settling velocity was proved to play a crucial role in activated sludge granulation. Based on the continuously measured data, the granulation process was divided into three phases, granules namely initiating, developing and maturating.


Desalination ◽  
2010 ◽  
Vol 261 (1-2) ◽  
pp. 191-196 ◽  
Author(s):  
Xiang Tu ◽  
Sheng Zhang ◽  
Lirong Xu ◽  
Mingchuan Zhang ◽  
Jianrong Zhu

2009 ◽  
Vol 60 (4) ◽  
pp. 1049-1054 ◽  
Author(s):  
S. López–Palau ◽  
J. Dosta ◽  
J. Mata-Álvarez

Aerobic granular sludge was cultivated in a sequencing batch reactor (SBR) in order to remove the organic matter present in winery wastewater. The formation of granules was performed using a synthetic substrate. The selection parameter was the settling time, as well as the alternation of feast-famine periods, the air velocity and the height/diameter ratio of the reactor. After 10 days of operation under these conditions, the first aggregates could be observed. Filamentous bacteria were still present in the reactor but they disappeared progressively. During the start-up, COD loading was increased from 2.7 to 22.5 kg COD/(m3 day) in order to obtain a feast period between 30 and 60 minutes. At this point, granules were quite round, with a particle diameter between 3.0 and 4.0 mm and an average density of 6 g L−1. After 120 days of operation, synthetic media was replaced by real winery wastewater, with a COD loading of 6 kg COD/(m3 day). The decrease of the organic load implied a reduction of the aggregate diameter and a density increase up to 13.2 g L−1. The effluent was free of organic matter and the solids concentration in the reactor reached 6 g VSS L−1.


RSC Advances ◽  
2016 ◽  
Vol 6 (18) ◽  
pp. 15201-15209 ◽  
Author(s):  
Fanghui Yuan ◽  
Chao Song ◽  
Xuefei Sun ◽  
Linrui Tan ◽  
Yunkun Wang ◽  
...  

BioSeNPs, which were produced by aerobic granular sludge in a sequencing batch reactor, could be used to remove cadmium from aqueous solution with high efficiency.


2004 ◽  
Vol 50 (10) ◽  
pp. 1-10 ◽  
Author(s):  
P.A. Wilderer ◽  
B.S. McSwain

Twenty plus years of experience, innovation, and research in the field of biological wastewater treatment and biofilm applications lead to the conclusion that biofilms are in many cases more desirable in reactors than suspended activated sludge. Biofilm reactors can provide very long biomass residence times even when the hydraulic influent loading is low. This makes them particularly suitable when treatment requires slow growing organisms with poor biomass yield or when the wastewater concentration is too low to support growth of activated sludge flocs. Regardless of the settling characteristics of biological aggregates or the hydraulic influent loading the metabolic activity in the reactor can be maintained at a high level. This paper reviews the application of biofilms in sequencing batch reactor (SBR) systems to treat non-readily biodegradable substrates, volatile organic waste constituents, complex waste streams requiring co-metabolism, and particulate wastewaters. Recent research using the SBR to form aerobic granular sludge as a special application of biofilms is also discussed.


Sign in / Sign up

Export Citation Format

Share Document