Adsorption of Reactive Brilliant Blue Dye from Aqueous Solution Using Modified Walnut Shell: Kinetics, Equilibrium, and Thermodynamics

Author(s):  
Zhijie Mao ◽  
Zuoxiang Zeng ◽  
Weilan Xue ◽  
Shan Jiang
2018 ◽  
Vol 40 (23) ◽  
pp. 3072-3085 ◽  
Author(s):  
Ana Maria Salgueiro Baptisttella ◽  
Andressa Aziz Diniz Araújo ◽  
Matheus Caldas Barreto ◽  
Vivian Stumpf Madeira ◽  
Mauricio Alves da Motta Sobrinho

Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


2021 ◽  
Vol 22 (1) ◽  
pp. 149-158
Author(s):  
Neda Eisazadeh ◽  
Hossein Eisazadeh ◽  
Moein Ghadakpour

2021 ◽  
pp. 50655
Author(s):  
Aafia Tehrim ◽  
Min Dai ◽  
Xiange Wu ◽  
Malik Muhammad Umair ◽  
Imran Ali ◽  
...  

2013 ◽  
Vol 726-731 ◽  
pp. 2960-2963
Author(s):  
Ai Hui Liang ◽  
Dong Qin Han ◽  
Hui Yue Gan ◽  
Zhi Liang Jiang

In this paper, the effect of Fe3O4nanoparticle catalytic degradation brilliant blue X-BR dye was studied using spectrophotometric method. It was found that in the media of pH 0.65 HCl-NaAc buffer solution, 100 μmol/L H2O2, 0.7 g/L Fe3O4nanoparticle and the temperature 25°C, the degradation rate for reactive brilliant blue X-BR was over 93.5% in 20 min under the optimal conditions.


2013 ◽  
Vol 47 (7) ◽  
pp. 2563-2571 ◽  
Author(s):  
Dahu Ding ◽  
Yingxin Zhao ◽  
Shengjiong Yang ◽  
Wansheng Shi ◽  
Zhenya Zhang ◽  
...  

2016 ◽  
Vol 869 ◽  
pp. 765-767 ◽  
Author(s):  
Layane Rodrigues Almeida ◽  
João Sammy Nery Souza ◽  
Edson Cavalcanti Silva Filho ◽  
Josy Anteveli Osajima

The presence of organic pollutants, which cannot be eliminated by conventional processes of primary and secondary treatment, can be problematic. Photocatalytic processes offer an efficient breakdown of organic pollutants into non-toxic compounds such as CO2 and H2O. This paper proposes the use of the titanium dioxide embedded in palygorskite as a photoactive material in the degradation of cationic dye, Coomassie Brilliant Blue. The system was irradiated using UV light for a maximum time of 120 minutes. The concentration of the dye used was 1.0x10-4 mol L-1 in 0.5 g L-1 of the photoactive material. The kinetics of the system was monitored by UV-Vis spectrophotometry. In 120 minutes of radiation, the process of photocatalysis reduced the initial concentration of the Coomassie Brilliant Blue dye in half.


RSC Advances ◽  
2016 ◽  
Vol 6 (27) ◽  
pp. 22395-22410 ◽  
Author(s):  
K. Z. Elwakeel ◽  
A. A. El-Bindary ◽  
A. Ismail ◽  
A. M. Morshidy

Chitosan, glycidyl methacrylate (synthetic polymer) and magnetite are combined to produce novel magnetic macro-reticular hybrid synthetic–natural materials which are shown to be effective sorbents for RBBR ions.


Sign in / Sign up

Export Citation Format

Share Document