Using of modified-bentonite as low-cost sorbent for removal of methylene blue dye from aqueous solution

Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.

2021 ◽  
Vol 33 (2) ◽  
pp. 471-483
Author(s):  
Patience Mapule Thabede ◽  
Ntaote David Shooto ◽  
Eliazer Bobby Naidoo

Present study reports on the sorption study of chromium(VI), cadmium(II) ions and methylene blue dye by pristine, defatted and carbonized Nigella sativa L. seeds from aqueous solution. The removal of oil from pristine Nigella sativa L. (PNS) seeds was carried out by defatting the Nigella sativa with acetone and N,N-dimethylformamide and then labelled ANS and DNS, respectively. Thereafter the defatted ANS and DNS adsorbents were carbonized at 600 ºC for 2 h under nitrogen and labelled as CANS and CDNS. The results of pristine, defatted and carbonized seeds were compared. The removal of Cr(VI), Cd(II) and methylene blue dye from aqueous solutions was investigated by varying adsorbate concentration, solution pH, reaction contact time and temperature of the solution. The SEM images indicated that the surface morphology of PNS was irregular, whilst ANS and DNS had pores and cavities. CANS and CDNS was heterogeneous and had pores and cavities. FTIR spectroscopy showed that the adsorbents surfaces had bands that indicated a lot of oxygen containing groups. The pH of the solution had an influence on the removal uptake of Cr(VI), Cd(II) and methylene blue. The sorption of Cr(VI) decreased when pH of the solution was increased due to different speciation of Cr(VI) ions whilst the removal of Cd(II) and methylene blue increased when solution pH was increased. Pseudo first order kinetic model well described the adsorption of Cr(VI), Cd(II) and methylene blue onto PNS. On the other hand, the kinetic data for ANS, CANS, DNS and CDNS was well described by pseudo second order. Furthermore, the removal mechanism onto PNS and ANS was better described by Freundlich multilayer model. The CANS, DNS and CDNS fitted Langmuir monolayer model. Thermodynamic parameters indicated that the sorption processes of Cr(VI), Cd(II) and methylene blue was endothermic and effective at high temperatures for all adsorbents. The ΔSº and ΔHº had positive values this confirmed that the sorption of Cr(VI), Cd(II) and methylene blue onto all adsorbents was random and endothermic, respectively. The values of ΔGº confirmed that the sorption of Cr(VI), Cd(II) and methylene blue on all adsorbents was spontaneous and predominated by physical adsorption process. The CANS had highest adsorption capacity of 99.82 mg/g for methylene blue, 96.89 mg/g for Cd(II) and 87.44 mg/g for Cr(VI) followed by CDNS with 93.90, 73.91 and 65.38 mg/g for methylene blue, Cd(II) and Cr(VI), respectively. The ANS capacities were 58.44, 45.28 and 48.96 mg/g whilst DNS capacities were 48.19, 32.69 and 34.65 mg/g for methylene blue, Cd(II) and Cr(VI), respectively. PNS had the lowest sorption capacities at 43.88, 36.01 and 19.84 mg/g for methylene blue, Cd(II) and Cr(VI), respectively.


2021 ◽  
pp. 50655
Author(s):  
Aafia Tehrim ◽  
Min Dai ◽  
Xiange Wu ◽  
Malik Muhammad Umair ◽  
Imran Ali ◽  
...  

Author(s):  
Mohd Azmier Ahmad ◽  
Muhammad Aswar Eusoff ◽  
Kayode Adesina Adegoke ◽  
Olugbenga Solomon Bello

2017 ◽  
Vol 4 (2) ◽  
pp. 424-433 ◽  
Author(s):  
M. Vinuth ◽  
H.S. Bhojya Naik ◽  
B.M. Vinoda ◽  
H. Gururaj ◽  
N. Thomas ◽  
...  

Author(s):  
Zoubaida Landolsi ◽  
Ibtissem Ben Asseker ◽  
Abdullah Yahya Abdullah Al Zahrani ◽  
Daniela Nunes ◽  
Elvira Fortunato ◽  
...  

2017 ◽  
Vol 03 (01) ◽  
Author(s):  
Seghier Abdelkarim ◽  
Hadjel Mohammed ◽  
Benderdouche Nouredine

2013 ◽  
Vol 31 (2) ◽  
pp. 276-283 ◽  
Author(s):  
Ponnusamy Senthil Kumar ◽  
Maria Jacob Stani Raja ◽  
Mahathevan Kumaresan ◽  
Dinesh Kumar Loganathan ◽  
Prabhakaran Chandrasekaran

Sign in / Sign up

Export Citation Format

Share Document