scholarly journals Employing a Gain-of-Function Factor IX Variant R338L to Advance the Efficacy and Safety of Hemophilia B Human Gene Therapy: Preclinical Evaluation Supporting an Ongoing Adeno-Associated Virus Clinical Trial

2015 ◽  
Vol 26 (2) ◽  
pp. 69-81 ◽  
Author(s):  
Paul E. Monahan ◽  
Junjiang Sun ◽  
Tong Gui ◽  
Genlin Hu ◽  
William B. Hannah ◽  
...  
2017 ◽  
Vol 1 (26) ◽  
pp. 2591-2599 ◽  
Author(s):  
Lindsey A. George

Abstract Concurrent with the development of recombinant factor replacement products, the characterization of the F9 and F8 genes over 3 decades ago allowed for the development of recombinant factor products and made the hemophilias a target disease for gene transfer. The progress of hemophilia gene therapy has been announced in 3 American Society of Hematology scientific plenary sessions, including the first “cure” in a large animal model of hemophilia B in 1998, first in human sustained vector-derived factor IX activity in 2011, and our clinical trial results reporting sustained vector-derived factor IX activity well into the mild or normal range in 2016. This progression to clinically meaningful success combined with numerous ongoing recombinant adeno-associated virus (rAAV)–mediated hemophilia gene transfer clinical trials suggest that the goal of gene therapy to alter the paradigm of hemophilia care may soon be realized. Although several novel therapeutics have recently emerged for hemophilia, gene therapy is unique in its potential for a one-time disease-altering, or even curative, treatment. This review will focus on the prior progress and current clinical trial investigation of rAAV-mediated gene transfer for hemophilia A and B.


Gene Therapy ◽  
2020 ◽  
pp. 77-92
Author(s):  
Jeffrey S. Bartlett ◽  
Richard J. Samulski

Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2670-2676 ◽  
Author(s):  
Jane D. Mount ◽  
Roland W. Herzog ◽  
D. Michael Tillson ◽  
Susan A. Goodman ◽  
Nancy Robinson ◽  
...  

Abstract Hemophilia B is an X-linked coagulopathy caused by absence of functional coagulation factor IX (FIX). Using adeno-associated virus (AAV)–mediated, liver-directed gene therapy, we achieved long-term (> 17 months) substantial correction of canine hemophilia B in 3 of 4 animals, including 2 dogs with an FIX null mutation. This was accomplished with a comparatively low dose of 1 × 1012 vector genomes/kg. Canine FIX (cFIX) levels rose to 5% to 12% of normal, high enough to result in nearly complete phenotypic correction of the disease. Activated clotting times and whole blood clotting times were normalized, activated partial thromboplastin times were substantially reduced, and anti-cFIX was not detected. The fourth animal, also a null mutation dog, showed transient expression (4 weeks), but subsequently developed neutralizing anti-cFIX (inhibitor). Previous work in the canine null mutation model has invariably resulted in inhibitor formation following treatment by either gene or protein replacement therapies. This study demonstrates that hepatic AAV gene transfer can result in sustained therapeutic expression in a large animal model characterized by increased risk of a neutralizing anti-FIX response.


2015 ◽  
Vol 21 (22) ◽  
pp. 3248-3256 ◽  
Author(s):  
Yarong Liu ◽  
Natnaree Siriwon ◽  
Jennifer Rohrs ◽  
Pin Wang

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3124-3124 ◽  
Author(s):  
Paul E. Monahan ◽  
Junjiang Sun ◽  
Tong Gui ◽  
David G Wichlan ◽  
Scott W McPhee ◽  
...  

Abstract Abstract 3124 Persistent factor IX expression and phenotypic improvement have been achieved in a human clinical trial for hemophilia B using liver-directed adeno-associated virus (AAV) gene therapy vectors. An ongoing clinical trial uses a vector incorporating self-complementing AAV (scAAV) genome form, factor IX codon optimization (FIXopt) and AAV serotype 8 capsid. As was seen in a previous single-strand AAV serotype 2 trial, dose escalation has been associated with apparent immune-mediated transient inflammation of vector-transduced liver, although in contrast to the previous trial persistent FIX expression has been maintained for the first time. Taken together, these important trials define a consistent threshold load of AAV capsid that has stimulated capsid-specific cytotoxic lymphocyte recognition and potential transaminitis. To advance the successes achieved in these trials while providing a clear margin of safety so that this immunogenic threshold need not be approached, we have pursued steps to limit further the AAV capsid load. Single amino acid substitutions at arginine 338 in the FIX catalytic domain generate FIX variants with increased specific activity. We separately substituted either R338A, R338Q, or R338L (FIX Padua) into a codon optimized human factor IX cDNA and evaluated F.IX expression in tissue culture following plasmid DNA transfection of HEK 293t cells. Each R338 substitution improved FIX specific activity, up to 10 times increased over wild type using the R338LFIXopt cDNA. We next generated scAAV8 vectors incorporating a liver-specific transthyretin (TTR) promoter to express optimized codon F.IX cDNA with or without the R338L substitution. FIX−/− mice receiving portal vein injection of 1 × 1010 vg/animal (4 ×1011 vg/kg) expressed 86.5% of normal FIX activity at 2 months post-transduction from the WTopt vector and 330% normal from the R338LFIXopt. Incorporation of R338Lopt variant resulted in at least 6 to 10 fold increase in FIX specific activity over a follow-up of > 40 weeks. At ten months following FIX gene delivery, mice underwent a tail transection bleeding challenge. FIX vector mice demonstrated therapeutic protection from this major bleeding challenge and furthermore all survived with no late rebleeding (a hallmark of hemophilic phenotype). Greater than 100% normal human FIX activity was maintained for >40 weeks following treatment with the R338LFIX vector (v. 26.3% at euthanasia in WTopt vector group). The prolonged follow-up permitted extended safety evaluation. Factor IX inhibitor antibodies were not detected in any mice throughout the follow-up; FIX-binding IgG1 and IgG2 were negative also. Thrombin/antithrombin III complexes (TAT) examined at 12 weeks and at >30 weeks of age in R338LFIXopt vector mice did not differ from levels in WTFIXopt vector-treated or age-matched C57Bl/6 hemostatically normal mice. Necropsy at 40–44 weeks after vector (1 year of age) showed only age-related changes with no microvascular or macrovascular thrombosis on H&E staining or specific immunostaining for fibrin/fibrinogen deposition; specific staining for fibrosis within myocardium or other sites was negative. We next synthesized a R338LFIXopt expression cassette containing the LP1 promoter/enhancer/intron sequence being used in the ongoing clinical trial and demonstrated equivalent FIX activity from either promoter construct. We then established that the R338LFIXopt vector gives a predictable dose-response across a range of doses as low as 1x 1010 vg/kg I.V. and as high as 4 × 1012 vg/kg I.V. Hemarthrosis is the most common bleeding complication in hemophilia and leads to chronic joint destruction. Bleeding was induced in the joint of FIX−/− mice that had been transduced 4 weeks earlier with the R338LFIX vector. Joints were collected at 2 weeks after induced bleed and the bleeding-induced joint damage was graded using an established histologic score. I.V. R338LFIXopt vector pretreatment resulted in protection against joint degeneration in a dose-dependent fashion in this most relevant clinical scenario. These preclinical studies demonstrate a safety :efficacy profile to advance hemophilia gene therapy using the scAAV8.R338LFIXopt vector. Disclosures: Monahan: Baxter: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Asklepios BioPharmaceutical: Patents & Royalties, Research Funding; CSL Behring: Honoraria; NovoNordisk: Honoraria, Membership on an entity's Board of Directors or advisory committees; PharmaIN: Research Funding; Prolor-Biotech: Research Funding. McPhee:Asklepios Biopharmaceutical: Employment. Samulski:Asklepios Biopharmaceutical: Employment, Patents & Royalties.


Blood ◽  
2006 ◽  
Vol 107 (7) ◽  
pp. 2653-2661 ◽  
Author(s):  
Amit C. Nathwani ◽  
John T. Gray ◽  
Catherine Y. C. Ng ◽  
Junfang Zhou ◽  
Yunyu Spence ◽  
...  

AbstractTransduction with recombinant adeno-associated virus (AAV) vectors is limited by the need to convert its single-stranded (ss) genome to transcriptionally active double-stranded (ds) forms. For AAV-mediated hemophilia B (HB) gene therapy, we have overcome this obstacle by constructing a liver-restricted mini–human factor IX (hFIX) expression cassette that can be packaged as complementary dimers within individual AAV particles. Molecular analysis of murine liver transduced with these self-complementary (sc) vectors demonstrated rapid formation of active ds-linear genomes that persisted stably as concatamers or monomeric circles. This unique property resulted in a 20-fold improvement in hFIX expression in mice over comparable ssAAV vectors. Administration of only 1 × 1010 scAAV particles led to expression of hFIX at supraphysiologic levels (8I U/mL) and correction of the bleeding diathesis in FIX knock-out mice. Of importance, therapeutic levels of hFIX (3%-30% of normal) were achieved in nonhuman primates using a significantly lower dose of scAAV than required with ssAAV. Furthermore, AAV5-pseudotyped scAAV vectors mediated successful transduction in macaques with pre-existing immunity to AAV8. Hence, this novel vector represents an important advance for hemophilia B gene therapy.


Sign in / Sign up

Export Citation Format

Share Document