null mutation
Recently Published Documents


TOTAL DOCUMENTS

529
(FIVE YEARS 32)

H-INDEX

87
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Manuel F López-Aranda ◽  
Gayle M Boxx ◽  
Miranda Phan ◽  
Karen Bach ◽  
Rochelle Mandanas ◽  
...  

Tuberous Sclerosis Complex (TSC) is a genetic disorder associated with high rates of intellectual disability and autism. Although previous studies focused on the role of neuronal deficits in the memory phenotypes of rodent models of TSC, the results presented here demonstrate a role for microglia in these deficits. Mice with a heterozygous null mutation of the Tsc2 gene (Tsc2+/-), show deficits in hippocampal dependent tasks, as well as abnormal long-term potentiation (LTP) in the hippocampal CA1 region. Here, we show that microglia and type I interferon signaling (IFN1) have a key role in the object place recognition (OPR; a hippocampal dependent task) deficits and abnormal LTP of Tsc2+/- male mice. Unexpectedly, we demonstrate that male, but not female, Tsc2+/- mice showed OPR deficits. Importantly, these deficits can be rescued by depletion of microglia, as well as by a genetic manipulation of a signaling pathway known to modulate microglia function (interferon-alpha/beta receptor alpha chain null mutation). In addition to rescuing the OPR deficits, depletion of microglia also reversed the abnormal LTP of the Tsc2+/- mice. Altogether, our results suggest that altered IFN1 signaling in microglia cause the abnormal LTP and OPR deficits of male Tsc2+/- mice.


Neuroreport ◽  
2021 ◽  
Vol 32 (16) ◽  
pp. 1287-1292
Author(s):  
Justin Tan ◽  
Dion Kaiserman ◽  
Stephen J O’Leary ◽  
Phillip I. Bird

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257257
Author(s):  
Eunhye Goo ◽  
Ingyu Hwang

The highly conserved ATP-dependent Lon protease plays important roles in diverse biological processes. The lon gene is usually nonessential for viability; however, lon mutants of several bacterial species, although viable, exhibit cellular defects. Here, we show that a lack of Lon protease causes pleiotropic effects in the rice pathogen Burkholderia glumae. The null mutation of lon produced three colony types, big (BLONB), normal (BLONN), and small (BLONS), in Luria–Bertani (LB) medium. Colonies of the BLONB and BLONN types were re-segregated upon subculture, while those of the BLONS type were too small to manipulate. The BLONN type was chosen for further studies, as only this type was fully genetically complemented. BLONN-type cells did not reach the maximum growth capacity, and their population decreased drastically after the stationary phase in LB medium. BLONN-type cells were defective in the biosynthesis of quorum sensing (QS) signals and exhibited reduced oxalate biosynthetic activity, causing environmental alkaline toxicity and population collapse. Addition of excessive N-octanoyl-homoserine lactone (C8-HSL) to BLONN-type cell cultures did not fully restore oxalate biosynthesis, suggesting that the decrease in oxalate biosynthesis in BLONN-type cells was not due to insufficient C8-HSL. Co-expression of lon and tofR in Escherichia coli suggested that Lon negatively affects the TofR level in a C8-HSL-dependent manner. Lon protease interacted with the oxalate biosynthetic enzymes, ObcA and ObcB, indicating potential roles for the oxalate biosynthetic activity. These results suggest that Lon protease influences colony morphology, growth, QS system, and oxalate biosynthesis in B. glumae.


Genetics ◽  
2021 ◽  
Author(s):  
Jieyan Chen ◽  
Junjie Luo ◽  
Adishthi S Gurav ◽  
Zijing Chen ◽  
Yijin Wang ◽  
...  

Abstract In most experimental animals, it is challenging to combine mutations and rescue transgenes and to use bipartite systems to assess gene expression. To circumvent the difficulties in combining multiple genetic elements, we developed the DREaMR ( Drug-on, REporter, Mutant, Rescue) system. Using Drosophila white as the initial model, we demonstrated that introduction of a single insertion by CRISPR/Cas9 created a null mutation, a tagged rescue construct, which could be induced with doxycycline, and which allowed assessment of protein expression. To create a DREaMR in an organism in which combining multiple genetic elements is more problematic than in Drosophila, we tested the mosquito, Aedes aegypti—the insect vector for dengue, yellow fever, Zika and other viral diseases. We generated a DREaMR allele in the kh gene, which permitted us to induce expression of the rescue construct, and detect expression of Kh. Thus, this system avoids the need to perform genetic crosses to introduce an inducible rescue transgene in a mutant background, or to combine driver and reporter lines to examine expression of the targeted protein. We propose that DREaMR provides a system that can be applied to additional mosquito vectors as well as other organisms in which CRISPR/Cas9 is effective.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Eduarde Rohner ◽  
Nevin Witman ◽  
Jesper Sohlmer ◽  
Erwin De Genst ◽  
William E. Louch ◽  
...  

Abstract Background The human L39X phospholamban (PLN) cardiomyopathic mutant has previously been reported as a null mutation but the detailed molecular pathways that lead to the complete lack of detectable protein remain to be clarified. Previous studies have shown the implication between an impaired cellular degradation homeostasis and cardiomyopathy development. Therefore, uncovering the underlying mechanism responsible for the lack of PLN protein has important implications in understanding the patient pathology, chronic human calcium dysregulation and aid the development of potential therapeutics. Methods A panel of mutant and wild-type reporter tagged PLN modified mRNA (modRNA) constructs were transfected in human embryonic stem cell-derived cardiomyocytes. Lysosomal and proteasomal chemical inhibitors were used together with cell imaging and protein analysis tools in order to dissect degradation pathways associated with expressed PLN constructs. Transcriptional profiling of the cardiomyocytes transfected by wild-type or L39X mutant PLN modRNA was analysed with bulk RNA sequencing. Results Our modRNA assay system revealed that transfected L39X mRNA was stable and actively translated in vitro but with only trace amount of protein detectable. Proteasomal inhibition of cardiomyocytes transfected with L39X mutant PLN modRNA showed a fourfold increase in protein expression levels. Additionally, RNA sequencing analysis of protein degradational pathways showed a significant distinct transcriptomic signature between wild-type and L39X mutant PLN modRNA transfected cardiomyocytes. Conclusion Our results demonstrate that the cardiomyopathic PLN null mutant L39X is rapidly, actively and specifically degraded by proteasomal pathways. Herein, and to the best of our knowledge, we report for the first time the usage of modified mRNAs to screen for and illuminate alternative molecular pathways found in genes associated with inherited cardiomyopathies.


2021 ◽  
Author(s):  
Zofia Nehr ◽  
Sabine Chenivesse ◽  
Bernard Billoud ◽  
Sabine Genicot ◽  
Nathalie Desban ◽  
...  

The brown alga Ectocarpus is a filamentous seaweed that grows by tip growth and branching. In the morphometric mutant etoile, tip growth is slower than in the WT and eventually stops. In this paper, we show that the causal etoile mutation is a null mutation in a bi-domain BAR-RhoGAP gene. By quantitative RT-PCR, we showed that ETOILE is ubiquitously expressed in prostrate filaments of the Ectocarpus sporophyte, and is downregulated in the etoile mutant. We immunolocalised both domains of the protein in WT and etoile, as well as RAC1, the known target of Rho-GAP enzymes. Thus, ETOILE would be localised at the apical cell dome where it would control the localisation of EsRAC1 to the plasma membrane. Actin staining showed that the mutant is not affected in F-actin structures. Overall, these results suggest that in Ectocarpus, BAR-RhoGAP controls tip growth by controlling RAC1 localization and through an actin-independent mechanism.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christopher Chase Bolt ◽  
Lucille Lopez-Delisle ◽  
Bénédicte Mascrez ◽  
Denis Duboule

AbstractHuman families with chromosomal rearrangements at 2q31, where the human HOXD locus maps, display mesomelic dysplasia, a severe shortening and bending of the limb. In mice, the dominant Ulnaless inversion of the HoxD cluster produces a similar phenotype suggesting the same origin for these malformations in humans and mice. Here we engineer 1 Mb inversion including the HoxD gene cluster, which positioned Hoxd13 close to proximal limb enhancers. Using this model, we show that these enhancers contact and activate Hoxd13 in proximal cells, inducing the formation of mesomelic dysplasia. We show that a secondary Hoxd13 null mutation in-cis with the inversion completely rescues the alterations, demonstrating that ectopic HOXD13 is directly responsible for this bone anomaly. Single-cell expression analysis and evaluation of HOXD13 binding sites suggests that the phenotype arises primarily by acting through genes normally controlled by HOXD13 in distal limb cells. Altogether, these results provide a conceptual and mechanistic framework to understand and unify the molecular origins of human mesomelic dysplasia associated with 2q31.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hon Y. Chan ◽  
Lachlan M. Moldenhauer ◽  
Holly M. Groome ◽  
John E. Schjenken ◽  
Sarah A. Robertson

AbstractMaternal immune adaptation to accommodate pregnancy depends on sufficient availability of regulatory T (Treg) cells to enable embryo implantation. Toll-like receptor 4 is implicated as a key upstream driver of a controlled inflammatory response, elicited by signals in male partner seminal fluid, to initiate expansion of the maternal Treg cell pool after mating. Here, we report that mice with null mutation in Tlr4 (Tlr4−/−) exhibit impaired reproductive outcomes after allogeneic mating, with reduced pregnancy rate, elevated mid-gestation fetal loss, and fetal growth restriction, compared to Tlr4+/+ wild-type controls. To investigate the effects of TLR4 deficiency on early events of maternal immune adaptation, TLR4-regulated cytokines and immune regulatory microRNAs were measured in the uterus at 8 h post-mating by qPCR, and Treg cells in uterus-draining lymph nodes were evaluated by flow cytometry on day 3.5 post-coitum. Ptgs2 encoding prostaglandin-endoperoxide synthase 2, cytokines Csf2, Il6, Lif, and Tnf, chemokines Ccl2, Cxcl1, Cxcl2, and Cxcl10, and microRNAs miR-155, miR-146a, and miR-223 were induced by mating in wild-type mice, but not, or to a lesser extent, in Tlr4−/− mice. CD4+ T cells were expanded after mating in Tlr4+/+ but not Tlr4−/− mice, with failure to expand peripheral CD25+FOXP3+ NRP1− or thymic CD25+FOXP3+ NRP1+ Treg cell populations, and fewer Treg cells expressed Ki67 proliferation marker and suppressive function marker CTLA4. We conclude that TLR4 is an essential mediator of the inflammation-like response in the pre-implantation uterus that induces generation of Treg cells to support robust pregnancy tolerance and ensure optimal fetal growth and survival.


2021 ◽  
Vol 22 (13) ◽  
pp. 6739
Author(s):  
Chiara Urbinati ◽  
Livia Cosentino ◽  
Elena Angela Pia Germinario ◽  
Daniela Valenti ◽  
Daniele Vigli ◽  
...  

Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene and a major cause of intellectual disability in females. No cure exists for RTT. We previously reported that the behavioural phenotype and brain mitochondria dysfunction are widely rescued by a single intracerebroventricular injection of the bacterial toxin CNF1 in a RTT mouse model carrying a truncating mutation of the MeCP2 gene (MeCP2-308 mice). Given the heterogeneity of MECP2 mutations in RTT patients, we tested the CNF1 therapeutic efficacy in a mouse model carrying a null mutation (MeCP2-Bird mice). CNF1 selectively rescued cognitive defects, without improving other RTT-related behavioural alterations, and restored brain mitochondrial respiratory chain complex activity in MeCP2-Bird mice. To shed light on the molecular mechanisms underlying the differential CNF1 effects on the behavioural phenotype, we compared treatment effects on relevant signalling cascades in the brain of the two RTT models. CNF1 provided a significant boost of the mTOR activation in MeCP2-308 hippocampus, which was not observed in the MeCP2-Bird model, possibly explaining the differential effects of CNF1. These results demonstrate that CNF1 efficacy depends on the mutation beared by MeCP2-mutated mice, stressing the need of testing potential therapeutic approaches across RTT models.


Sign in / Sign up

Export Citation Format

Share Document