Locomotor Recovery in Spinal Cord Injury: Insights Beyond Walking Speed and Distance

2016 ◽  
Vol 33 (15) ◽  
pp. 1428-1435 ◽  
Author(s):  
Lea Awai ◽  
Armin Curt
2006 ◽  
Vol 23 (5) ◽  
pp. 660-673 ◽  
Author(s):  
Jason R. Potas ◽  
Yu Zheng ◽  
Charbel Moussa ◽  
Melinda Venn ◽  
Catherine A. Gorrie ◽  
...  

Author(s):  
Johannie Audet ◽  
Charly G. Lecomte

Tonic or phasic electrical epidural stimulation of the lumbosacral region of the spinal cord facilitates locomotion and standing in a variety of preclinical models with severe spinal cord injury. However, the mechanisms of epidural electrical stimulation that facilitate sensorimotor functions remain largely unknown. This review aims to address how epidural electrical stimulation interacts with spinal sensorimotor circuits and discusses the limitations that currently restrict the clinical implementation of this promising therapeutic approach.


2014 ◽  
Vol 1549 ◽  
pp. 1-10 ◽  
Author(s):  
H. Nait Taleb Ali ◽  
M.P. Morel ◽  
M. Doulazmi ◽  
S. Scotto-Lomassese ◽  
P. Gaspar ◽  
...  

2022 ◽  
Vol 17 (6) ◽  
pp. 1318
Author(s):  
Jin-Zhu Bai ◽  
Yi-Xin Wang ◽  
Zhen Lyu ◽  
Guang-Hao Zhang ◽  
Xiao-Lin Huo

2007 ◽  
Vol 6 (4) ◽  
pp. 337-343 ◽  
Author(s):  
Virany H. Hillard ◽  
Hong Peng ◽  
Kaushik Das ◽  
Raj Murali ◽  
Chitti R. Moorthy ◽  
...  

Object Hyperbaric oxygen (HBO), the nitroxide antioxidant tempol, and x-irradiation have been used to promote locomotor recovery in experimental models of spinal cord injury. The authors used x-irradiation of the injury site together with either HBO or tempol to determine whether combined therapy offers greater benefit to rats. Methods Contusion injury was produced with a weight-drop device in rats at the T-10 level, and recovery was determined using the 21-point Basso-Beattie-Bresnahan (BBB) locomotor scale. Locomotor function recovered progressively during the 6-week postinjury observation period and was significantly greater after x-irradiation (20 Gy) of the injury site or treatment with tempol (275 mg/kg intraperitoneally) than in untreated rats (final BBB Scores 10.6 [x-irradiation treated] and 9.1 [tempol treated] compared with 6.4 [untreated], p < 0.05). Recovery was not significantly improved by HBO (2 atm for 1 hour [BBB Score 8.2, p > 0.05]). Interestingly, the improved recovery of locomotor function after x-irradiation, in contrast with antiproliferative radiotherapy for neoplasia, was inhibited when used together with either HBO or tempol (BBB Scores 8.2 and 8.3, respectively). The ability of tempol to block enhanced locomotor recovery by x-irradiation was accompanied by prevention of alopecia at the irradiation site. The extent of locomotor recovery following treatment with tempol, HBO, and x-irradiation correlated with measurements of spared spinal cord tissue at the contusion epicenter. Conclusions These results suggest that these treatments, when used alone, can activate neuroprotective mechanisms but, in combination, may result in neurotoxicity.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Qi Han ◽  
Josue D. Ordaz ◽  
Nai-Kui Liu ◽  
Zoe Richardson ◽  
Wei Wu ◽  
...  

AbstractLocomotor function, mediated by lumbar neural circuitry, is modulated by descending spinal pathways. Spinal cord injury (SCI) interrupts descending projections and denervates lumbar motor neurons (MNs). We previously reported that retrogradely transported neurotrophin-3 (NT-3) to lumbar MNs attenuated SCI-induced lumbar MN dendritic atrophy and enabled functional recovery after a rostral thoracic contusion. Here we functionally dissected the role of descending neural pathways in response to NT-3-mediated recovery after a T9 contusive SCI in mice. We find that residual projections to lumbar MNs are required to produce leg movements after SCI. Next, we show that the spared descending propriospinal pathway, rather than other pathways (including the corticospinal, rubrospinal, serotonergic, and dopaminergic pathways), accounts for NT-3-enhanced recovery. Lastly, we show that NT-3 induced propriospino-MN circuit reorganization after the T9 contusion via promotion of dendritic regrowth rather than prevention of dendritic atrophy.


2019 ◽  
Vol 212 ◽  
pp. 112695 ◽  
Author(s):  
Misty M. Strain ◽  
Michelle A. Hook ◽  
Joshua D. Reynolds ◽  
Yung-Jen Huang ◽  
Melissa K. Henwood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document