Diaphragm and Intercostal Muscle Activity after Mid-Cervical Spinal Cord Contusion in the Rat

2018 ◽  
Vol 35 (3) ◽  
pp. 533-547 ◽  
Author(s):  
Ming-Han Wen ◽  
Kun-Ze Lee
2020 ◽  
Vol 128 (5) ◽  
pp. 1130-1145
Author(s):  
Hsiao-Sen Chang ◽  
Kun-Ze Lee

Tongue muscle activity plays an important role in the regulation of upper airway patency. This study aimed to investigate the respiratory activity of the extrinsic tongue muscle in response to capsaicin-induced bronchopulmonary C-fiber activation following cervical spinal cord contusion. Midcervical spinal-contused animals exhibited a greater baseline preinspiratory burst amplitude of the extrinsic tongue muscle and were resistant to inhaled capsaicin-induced reduction of respiratory tongue muscle activity at the acute injured stage. However, inhalation of capsaicin caused a more severe attenuation of preinspiratory activity of the extrinsic tongue muscle at the chronic injured stage. These results suggest that the upper airway may be predisposed to collapse in response to bronchopulmonary C-fiber activation following chronic cervical spinal cord injury.


2015 ◽  
Vol 27 (3) ◽  
pp. 791-794 ◽  
Author(s):  
Hidetaka Imagita ◽  
Akira Nishikawa ◽  
Susumu Sakata ◽  
Yasue Nishii ◽  
Akira Minematsu ◽  
...  

2016 ◽  
Vol 28 (3) ◽  
pp. 881-885 ◽  
Author(s):  
Satoshi Okahara ◽  
Masataka Kataoka ◽  
Kuniharu Okuda ◽  
Masato Shima ◽  
Keiko Miyagaki ◽  
...  

Life Sciences ◽  
2002 ◽  
Vol 71 (5) ◽  
pp. 487-496 ◽  
Author(s):  
Tien-Yow Chuang ◽  
Ming-Chao Huang ◽  
Kuo-Chih Chen ◽  
Yue-Cune Chang ◽  
Yu-Shu Yen ◽  
...  

2017 ◽  
Vol 118 (4) ◽  
pp. 2412-2420 ◽  
Author(s):  
Stephen T. Foldes ◽  
Douglas J. Weber ◽  
Jennifer L. Collinger

After paralysis, the disconnection between the cortex and its peripheral targets leads to neuroplasticity throughout the nervous system. However, it is unclear how chronic paralysis specifically impacts cortical oscillations associated with attempted movement of impaired limbs. We hypothesized that μ- (8–13 Hz) and β- (15–30 Hz) event-related desynchronization (ERD) would be less modulated for individuals with hand paralysis due to cervical spinal cord injury (SCI). To test this, we compared the modulation of ERD from magnetoencephalography (MEG) during attempted and imagined grasping performed by participants with cervical SCI ( n = 12) and able-bodied controls ( n = 13). Seven participants with tetraplegia were able to generate some electromyography (EMG) activity during attempted grasping, whereas the other five were not. The peak and area of ERD were significantly decreased for individuals without volitional muscle activity when they attempted to grasp compared with able-bodied subjects and participants with SCI,with some residual EMG activity. However, no significant differences were found between subject groups during mentally simulated tasks (i.e., motor imagery) where no muscle activity or somatosensory consequences were expected. These findings suggest that individuals who are unable to produce muscle activity are capable of generating ERD when attempting to move, but the characteristics of this ERD are altered. However, for people who maintain volitional muscle activity after SCI, there are no significant differences in ERD characteristics compared with able-bodied controls. These results provide evidence that ERD is dependent on the level of intact muscle activity after SCI. NEW & NOTEWORTHY Source space MEG was used to investigate sensorimotor cortical oscillations in individuals with SCI. This study provides evidence that individuals with cervical SCI exhibit decreased ERD when they attempt to grasp if they are incapable of generating muscle activity. However, there were no significant differences in ERD between paralyzed and able-bodied participants during motor imagery. These results have important implications for the design and evaluation of new therapies, such as motor imagery and neurofeedback interventions.


2013 ◽  
Vol 30 (12) ◽  
pp. 1092-1099 ◽  
Author(s):  
Charles Nicaise ◽  
David M. Frank ◽  
Tamara J. Hala ◽  
Michèle Authelet ◽  
Roland Pochet ◽  
...  

2018 ◽  
Vol 35 (9) ◽  
pp. 1069-1078 ◽  
Author(s):  
John Hoffman Brock ◽  
Lori Graham ◽  
Eileen Staufenberg ◽  
Sarah Im ◽  
Mark Henry Tuszynski

2020 ◽  
Vol 34 (4) ◽  
pp. 333-343
Author(s):  
Ming-Jane Wu ◽  
Stéphane Vinit ◽  
Chun-Lin Chen ◽  
Kun-Ze Lee

Background. Intermittent hypoxia can induce respiratory neuroplasticity to enhance respiratory motor outputs following hypoxic treatment. This type of respiratory neuroplasticity is primarily mediated by the activation of Gq-protein-coupled 5-HT2 receptors and constrained by Gs-protein-coupled 5-HT7 receptors. Objective. The present study hypothesized that the blockade of 5-HT7 receptors can potentiate the effect of intermittent hypercapnic-hypoxia on respiratory function after cervical spinal cord contusion injury. Methods. The ventilatory behaviors of unanesthetized rats with midcervical spinal cord contusions were measured before, during, and after daily acute intermittent hypercapnic-hypoxia (10 episodes of 5 minutes of hypoxia [10% O2, 4% CO2, 86% N2] with 5 minutes of normoxia intervals for 5 days) at 8 weeks postinjury. On a daily basis, 5 minutes before intermittent hypercapnic-hypoxia, rats received either a 5-HT7 receptor antagonist (SB269970, 4 mg/kg, intraperitoneal) or a vehicle (dimethyl sulfoxide). Results. Treatment with intermittent hypercapnic-hypoxia induced a similar increase in tidal volume between rats that received SB269970 and those that received dimethyl sulfoxide within 60 minutes post-hypoxia on the first day. However, after 2 to 3 days of daily acute intermittent hypercapnic-hypoxia, the baseline tidal volumes of rats treated with SB269970 increased significantly. Conclusions. These results suggest that inhibiting the 5-HT7 receptor can transiently improve daily intermittent hypercapnic-hypoxia–induced tidal volume increase in midcervical spinal contused animals. Therefore, combining pharmacological treatment with rehabilitative intermittent hypercapnic-hypoxia training may be an effective strategy for synergistically enhancing respiratory neuroplasticity to improve respiratory function following chronic cervical spinal cord injury.


Sign in / Sign up

Export Citation Format

Share Document