arm cycling
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 49)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Evan J Lockyer ◽  
Christopher T Compton ◽  
Davis A. Forman ◽  
Gregory E. Pearcey ◽  
Duane C Button ◽  
...  

The use of transcranial magnetic stimulation to assess the excitability of the central nervous system to further understand the neural control of human movement is expansive. The majority of the work performed to-date has assessed corticospinal excitability either at rest or during relatively simple isometric contractions. The results from this work are not easily extrapolated to rhythmic, dynamic motor outputs given that corticospinal excitability is task-, phase-, intensity-, direction- and muscle-dependent (Power et al. 2018). Assessing corticospinal excitability during rhythmic motor output, however, involves technical challenges that are to be overcome, or at the minimum considered, when attempting to design experiments and interpret the physiological relevance of the results. The purpose of this narrative review is to highlight research examining corticospinal excitability during a rhythmic motor output and importantly, to provide recommendations regarding the many factors that must be considered when designing and interpreting findings from studies that involve limb movement. To do so, the majority of work described herein refers to work performed using arm cycling (arm pedaling or arm cranking) as a model of a rhythmic motor output used to examine the neural control of human locomotion.


Author(s):  
Lilla Botzheim ◽  
Jozsef Laczko ◽  
Diego Torricelli ◽  
Mariann Mravcsik ◽  
José L. Pons ◽  
...  

Arm cycling is a bi-manual motor task used in medical rehabilitation and in sports training. Understanding how muscle coordination changes across different biomechanical constraints in arm cycling is a step towards improved rehabilitation approaches. This exploratory study aims to get new insights on motor control during arm cycling. To achieve our main goal, we used the muscle synergies analysis to test three hypotheses: 1) body position with respect to gravity (sitting and supine) has an effect on muscle synergies; 2) the movement size (crank length) has an effect on the synergistic behavior; 3) the bimanual cranking mode (asynchronous and synchronous) requires different synergistic control. Thirteen able-bodied volunteers performed arm cranking on a custom-made device with unconnected cranks, which allowed testing three different conditions: body position (sitting versus supine), crank length (10cm versus 15cm) and cranking mode (synchronous versus asynchronous). For each of the eight possible combinations, subjects cycled for 30 seconds while electromyography of 8 muscles (4 from each arm) were recorded: biceps brachii, triceps brachii, anterior deltoid and posterior deltoid. Muscle synergies in this 8-dimensional muscle space were extracted by non-negative matrix factorization. Four synergies accounted for over 90% of muscle activation variances in all conditions. Results showed that synergies were affected by body position and cranking mode but practically unaffected by movement size. These results suggest that the central nervous system may employ different motor control strategies in response to external constraints such as cranking mode and body position during arm cycling.


2021 ◽  
Vol 77 (1) ◽  
pp. 117-123
Author(s):  
Christoph Zinner ◽  
Manuel Matzka ◽  
Sebastian Krumscheid ◽  
Hans-Christer Holmberg ◽  
Billy Sperlich

Abstract This study was designed to assess systemic cardio-respiratory, metabolic and perceived responses to incremental arm cycling with concurrent electrical myostimulation (EMS). Eleven participants (24 ± 3 yrs; 182 ± 10 cm; 86 ± 16.8 kg) performed two incremental tests involving arm cycling until volitional exhaustion was reached with and without EMS of upper-body muscles. The peak power output was 10.1% lower during arm cycling with (128 ± 30 W) than without EMS (141 ± 25 W, p = 0.01; d = 0.47). In addition, the heart rate (2-9%), oxygen uptake (7-15%), blood lactate concentration (8-46%) and ratings of perceived exertion (4-14%) while performing submaximal arm cycling with EMS were all higher with than without EMS (all p < 0.05). Upon exhaustion, the heart rate, oxygen uptake, lactate concentration, and ratings of perceived exertion did not differ between the two conditions (all p > 0.05). In conclusion, arm cycling with EMS induced more pronounced cardio-respiratory, metabolic and perceived responses, especially during submaximal arm cycling. This form of exercise with stimulation might be beneficial for a variety of athletes competing in sports involving considerable generation of work by the upper body (e.g., kayaking, cross-country skiing, swimming, rowing and various parasports).


2021 ◽  
Vol 76 (1) ◽  
pp. 175-189
Author(s):  
Mariann Mravcsik ◽  
Lilla Botzheim ◽  
Norbert Zentai ◽  
Davide Piovesan ◽  
Jozsef Laczko

Abstract Arm cycling on an ergometer is common in sports training and rehabilitation protocols. The hand movement is constrained along a circular path, and the user is working against a resistance, maintaining a cadence. Even if the desired hand trajectory is given, there is the flexibility to choose patterns of joint coordination and muscle activation, given the kinematic redundancy of the upper limb. With changing external load, motor noise and changing joint stiffness may affect the pose of the arm even though the endpoint trajectory is unchanged. The objective of this study was to examine how the crank resistance influences the variances of joint configuration and muscle activation. Fifteen healthy participants performed arm cranking on an arm-cycle ergometer both unimanually and bimanually with a cadence of 60 rpm against three crank resistances. Joint configuration was represented in a 3-dimensional joint space defined by inter-segmental joint angles, while muscle activation in a 4-dimensional "muscle activation space" defined by EMGs of 4 arm muscles. Joint configuration variance in the course of arm cranking was not affected by crank resistance, whereas muscle activation variance was proportional to the square of muscle activation. The shape of the variance time profiles for both joint configuration and muscle activation was not affected by crank resistance. Contrary to the prevailing assumption that an increased motor noise would affect the variance of auxiliary movements, the influence of noise doesn’t appear at the joint configuration level even when the system is redundant. Our results suggest the separation of kinematic- and force-control, via mechanisms that are compensating for dynamic nonlinearities. Arm cranking may be suitable when the aim is to perform training under different load conditions, preserving stable and secure control of joint movements and muscle activations.


2021 ◽  
Vol 27 (1) ◽  
pp. 121-134 ◽  
Author(s):  
Gary J. Farkas ◽  
Ashraf S. Gorgey ◽  
David R. Dolbow ◽  
Arthur S. Berg ◽  
David R. Gater

Background: Physical deconditioning and inactivity following spinal cord injury (SCI) are associated with multiple cardiometabolic risks. To mitigate cardiometabolic risk, exercise is recommended, but it is poorly established whether arm cycling exercise (ACE) or functional electrical stimulation (FES) leg cycling yields superior benefits. Objectives: To determine the adaptations of 16 weeks of FES cycling and ACE on exercise energy expenditure (EEE), cardiorespiratory fitness (CRF), and obesity after SCI. Methods: Thirteen physically untrained individuals were randomly assigned to FES (n = 6) or ACE (n = 7) exercise 5 days/week for 16 weeks. Pre- and post-intervention EEE, peak oxygen consumption (absolute and relative VO2Peak), and work were assessed using indirect calorimetry, while body composition was measured by dual-energy x-ray absorptiometry. Results: Main effects were found for peak power (p &lt; .001), absolute (p = .046) and relative (p = .042) VO2Peak, and peak work (p = .013). Compared to baseline, the ACE group increased in EEE (+85%, p = .002), peak power (+307%, p &lt; .001), VO2Peak (absolute +21%, relative +22%, p ≤ .024), peak work (19% increase, p = .003), and total body fat decreased (-6%, p = .05). The FES group showed a decrease in percentage body fat mass (−5%, p = .008). The ACE group had higher EEE (p = .008), peak power (p &lt; .001), and relative VO2Peak (p = .025) compared to postintervention values in the FES group. Conclusion: In the current study, ACE induced greater increases in EEE and CRF, whereas ACE and FES showed similar results on body fat. Exercise promotional efforts targeting persons with SCI should use both FES and ACE to reduce sedentary behavior and to optimize different health parameters after SCI.


Author(s):  
Soraya Martín-Manjarrés ◽  
Carlos Rodríguez-López ◽  
María Martín-García ◽  
Sara Vila-Maldonado ◽  
Cristina Granados ◽  
...  

People with spinal cord injury (SCI) tend to be more sedentary and increase fat accumulation, which could have a negative influence on metabolic flexibility. The aim of this study was to investigate the capacity to oxidize fat in a homogenous sample of men with thoracic SCI compared with healthy noninjured men during an arm cycling incremental test. Forty-one men, 21 with SCI and 20 noninjured controls, performed an incremental arm cycling test to determine peak fat oxidation (PFO) and the intensity of exercise that elicits PFO (Fatmax). PFO was expressed in absolute values (g/min) and relative to whole-body and upper-body lean mass ([mg·min−1]·kg−1) through three different models (adjusting by cardiorespiratory fitness and fat mass). Gross mechanical efficiency was also calculated. PFO was higher in SCI than in noninjured men (0.27 ± 0.07 vs. 0.17 ± 0.07 g/min; 5.39 ± 1.30 vs. 3.29 ± 1.31 [mg·min−1]·kg−1 whole-body lean mass; 8.28 ± 2.11 vs. 5.08 ± 2.12 [mg·min−1]·kg−1 upper-body lean mass). Fatmax was found at a significantly higher percentage of VO2peak in men with SCI (33.6% ± 8.2% vs. 23.6% ± 6.4%). Differences persisted and even increased in the fully adjustment model and at any intensity. Men with SCI showed significantly higher gross mechanical efficiency at 35 and 65 W than the noninjured group. Men with SCI showed higher fat oxidation when compared with noninjured men at any intensity, even increased after full adjustment for lean mass, fat mass, and cardiorespiratory fitness. These findings suggest that SCI men could improve their metabolic flexibility and muscle mass for greater efficiency, not being affected by their fat accumulation.


Sign in / Sign up

Export Citation Format

Share Document