Tick-Borne Encephalitis Virus Diversity in Ixodid Ticks and Small Mammals in South-Western Siberia, Russia

2016 ◽  
Vol 16 (8) ◽  
pp. 541-549 ◽  
Author(s):  
Valentina N. Bakhvalova ◽  
Galina S. Chicherina ◽  
Olga F. Potapova ◽  
Victor V. Panov ◽  
Victor V. Glupov ◽  
...  
2006 ◽  
Vol 6 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Valentina N. Bakhvalova ◽  
Andrey K. Dobrotvorsky ◽  
Viktor V. Panov ◽  
Vera A. Matveeva ◽  
Sergey E. Tkachev ◽  
...  

Pathogens ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 518
Author(s):  
Laure Bournez ◽  
Gerald Umhang ◽  
Marie Moinet ◽  
Céline Richomme ◽  
Jean-Michel Demerson ◽  
...  

A greater knowledge of the ecology of the natural foci of tick-borne encephalitis virus (TBEV) is essential to better assess the temporal variations of the risk of tick-borne encephalitis for humans. To describe the seasonal and inter-annual variations of the TBEV-cycle and the epidemiological parameters related to TBEV nymph-to-larva transmission, exposure of small mammals to TBEV, and tick aggregation on small mammals, a longitudinal survey in ticks and small mammals was conducted over a 3-year period in a mountain forest in Alsace, eastern France. TBEV prevalence in questing nymphs was lower in 2013 than in 2012 and 2014, probably because small mammals (Myodes glareolus and Apodemus flavicollis) were more abundant in 2012, which reduced tick aggregation and co-feeding transmission between ticks. The prevalence of TBEV in questing nymphs was higher in autumn than spring. Despite these variations in prevalence, the density of infected questing nymphs was constant over time, leading to a constant risk for humans. The seroprevalence of small mammals was also constant over time, although the proportion of rodents infested with ticks varied between years and seasons. Our results draw attention to the importance of considering the complex relationship between small mammal densities, tick aggregation on small mammals, density of infected questing nymphs, and prevalence of infected nymphs in order to forecast the risk of TBEV for humans.


2014 ◽  
Vol 5 (2) ◽  
pp. 145-151 ◽  
Author(s):  
Tamara P. Mikryukova ◽  
Nina S. Moskvitina ◽  
Yulia V. Kononova ◽  
Igor G. Korobitsyn ◽  
Mikhail Y. Kartashov ◽  
...  

2017 ◽  
Vol 8 (6) ◽  
pp. 895-906 ◽  
Author(s):  
Oxana A. Belova ◽  
Alexander G. Litov ◽  
Ivan S. Kholodilov ◽  
Liubov I. Kozlovskaya ◽  
Lesley Bell-Sakyi ◽  
...  

2017 ◽  
Vol 56 ◽  
pp. 36-43 ◽  
Author(s):  
Sergey E. Tkachev ◽  
Galina S. Chicherina ◽  
Irina Golovljova ◽  
Polina S. Belokopytova ◽  
Artem Yu. Tikunov ◽  
...  

Author(s):  
Song Joon Young

Although no human case of tick-borne encephalitis (TBE) has been documented in South Korea to date,5 surveillance studies have been conducted to evaluate the prevalence of tick-borne encephalitis virus (TBEV) in wild ticks.1-5 Four studies collected ticks by dragging or flagging in grassland and forest, while 1 study tested wild mammals (boars and rodents) by removing ticks from them. In the wild of South Korea, Haemaphysalis spp. were the predominant species found by tick dragging, while Ixodes nipponensis became predominant when harvested from small mammals.6


Oikos ◽  
1967 ◽  
Vol 18 (1) ◽  
pp. 124 ◽  
Author(s):  
P. Brinck ◽  
A. Johnels ◽  
B. Lundholm ◽  
A. Svedmyr ◽  
G. von Zeipel ◽  
...  

2009 ◽  
Vol 90 (8) ◽  
pp. 1781-1794 ◽  
Author(s):  
K. L. Mansfield ◽  
N. Johnson ◽  
L. P. Phipps ◽  
J. R. Stephenson ◽  
A. R. Fooks ◽  
...  

During the last 30 years, there has been a continued increase in human cases of tick-borne encephalitis (TBE) in Europe, a disease caused by tick-borne encephalitis virus (TBEV). TBEV is endemic in an area ranging from northern China and Japan, through far-eastern Russia to Europe, and is maintained in cycles involving Ixodid ticks (Ixodes ricinus and Ixodes persulcatus) and wild vertebrate hosts. The virus causes a potentially fatal neurological infection, with thousands of cases reported annually throughout Europe. TBE has a significant mortality rate depending upon the strain of virus or may cause long-term neurological/neuropsychiatric sequelae in people affected. In this review, we comprehensively reviewed TBEV, its epidemiology and pathogenesis, the clinical manifestations of TBE, along with vaccination and prevention. We also discuss the factors which may have influenced an apparent increase in the number of reported human cases each year, despite the availability of effective vaccines.


Sign in / Sign up

Export Citation Format

Share Document