virus diversity
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 106)

H-INDEX

30
(FIVE YEARS 8)

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Rory Gibb ◽  
Gregory F. Albery ◽  
Nardus Mollentze ◽  
Evan A. Eskew ◽  
Liam Brierley ◽  
...  

Host-virus association data underpin research into the distribution and eco-evolutionary correlates of viral diversity and zoonotic risk across host species. However, current knowledge of the wildlife virome is inherently constrained by historical discovery effort, and there are concerns that the reliability of ecological inference from host-virus data may be undermined by taxonomic and geographical sampling biases. Here, we evaluate whether current estimates of host-level viral diversity in wild mammals are stable enough to be considered biologically meaningful, by analysing a comprehensive dataset of discovery dates of 6571 unique mammal host-virus associations between 1930 and 2018. We show that virus discovery rates in mammal hosts are either constant or accelerating, with little evidence of declines towards viral richness asymptotes, even in highly sampled hosts. Consequently, inference of relative viral richness across host species has been unstable over time, particularly in bats, where intensified surveillance since the early 2000s caused a rapid rearrangement of species' ranked viral richness. Our results illustrate that comparative inference of host-level virus diversity across mammals is highly sensitive to even short-term changes in sampling effort. We advise caution to avoid overinterpreting patterns in current data, since it is feasible that an analysis conducted today could draw quite different conclusions than one conducted only a decade ago.


2021 ◽  
pp. 1-17
Author(s):  
Viktoriia Holovan ◽  
Olena Andriichuk ◽  
Irena Budzanivska ◽  
Pavlina Zelena ◽  
Tetiana Kondratiuk ◽  
...  

Abstract Virus diversity in Antarctic biotopes remains understudied. Here, we describe bacteriophages isolated from terrestrial environments, provide data on their natural bacterial hosts and study phage-host systems. Six bacterial isolates (FCKU 539, FCKU 533, FCKU 534, FCKU 538, FCKU 542 and FCKU 540) were recovered and characterized. Isolated bacteria belonged to Pseudomonas genus (Pseudomonas sp., Pseudomonas fluorescens, Pseudomonas putida) with optimal cultivation temperatures of 16–28°C. These bacteria and previously described Bacillus subtilis FCKU 537 were used for analysing virus-host interactions. Six lytic phages were isolated and named P. fluorescens Antarctic virus 1 (PFAV1), P. fluorescens Antarctic virus 2 (PFAV2), P. fluorescens Antarctic virus 3 (PFAV3), P. putida Antarctic virus 4 (PPAV4), Pseudomonas sp. Antarctic virus 5 (PSAV5) and B. subtilis Antarctic virus 6 (BSAV6) in relation to their natural hosts. According to electron microscopy data, these phages belonged to Caudovirales order. Cross-inoculation demonstrated high specificity of all Antarctic phages, which infected only their initial hosts at moderate temperatures. PFAV2 and PFAV3 phages also infected laboratory Pseudomonas savastanoi and P. fluorescens isolates. This paper adds new data on the occurrence and diversity of viruses and their respective bacterial hosts in soil biotopes of Antarctica.


2021 ◽  
Vol 9 (12) ◽  
pp. 2602
Author(s):  
Klaudia Chrzastek ◽  
Simona Kraberger ◽  
Kara Schmidlin ◽  
Rafaela S. Fontenele ◽  
Arun Kulkarni ◽  
...  

High-throughput sequencing approaches offer the possibility to better understand the complex microbial communities associated with animals. Viral metagenomics has facilitated the discovery and identification of many known and unknown viruses that inhabit mucosal surfaces of the body and has extended our knowledge related to virus diversity. We used metagenomics sequencing of chicken buccal swab samples and identified various small DNA viruses with circular genome organization. Out of 134 putative circular viral-like circular genome sequences, 70 are cressdnaviruses and 26 are microviruses, whilst the remaining 38 most probably represent sub-genomic molecules. The cressdnaviruses found in this study belong to the Circoviridae, Genomoviridae and Smacoviridae families as well as previously described CRESS1 and naryavirus groups. Among these, genomoviruses and smacoviruses were the most prevalent across the samples. Interestingly, we also identified 26 bacteriophages that belong to the Microviridae family, whose members are known to infect enterobacteria.


2021 ◽  
Author(s):  
Aine N O'Toole ◽  
Verity Hill ◽  
Ben Jackson ◽  
Rebecca Dewar ◽  
Nikita Sahadeo ◽  
...  

The scale of data produced during the SARS-CoV-2 pandemic has been unprecedented, with more than 5 million sequences shared publicly at the time of writing. This wealth of sequence data provides important context for interpreting local outbreaks. However, placing sequences of interest into national and international context is difficult given the size of the global dataset. Often outbreak investigations and genomic surveillance efforts require running similar analyses again and again on the latest dataset and producing reports. We developed civet (cluster investigation and virus epidemiology tool) to aid these routine analyses and facilitate virus outbreak investigation and surveillance. Civet can place sequences of interest in the local context of background diversity, resolving the query into different 'catchments' and presenting the phylogenetic results alongside metadata in an interactive, distributable report. Civet can be used on a fine scale for clinical outbreak investigation, for local surveillance and cluster discovery, and to routinely summarise the virus diversity circulating on a national level. Civet reports have helped researchers and public health bodies feedback genomic information in the appropriate context within a timeframe that is useful for public health.


2021 ◽  
Author(s):  
Debasis Nayak ◽  
Basanta Sahu ◽  
Prativa Majee ◽  
Ravi Singh ◽  
Niranjan Sahoo

Abstract Contagious pustular dermatitis is a disease that primarily infects small ruminants and has the zoonotic potential evoked by a Parapoxvirus, Orf virus (ORFV). This study evaluated an ORFV outbreak in goats that arose in Madhya Pradesh, a state of central India, during 2017 by constructing phylogenetic trees and unveiling its transboundary potential. Thereafter, the complete genome of an ORFV strain named Ind/MP has revealed the presence of 139,807bp nucleotide sequences, GC content 63.7%, 132 open reading frames (ORFs) circumscribed by inverted terminal repeats (ITRs) of 3,910bp. Evolutionary parameters such as selection pressure (θ=dN/dS), nucleotide diversity (π), etc., demonstrate the ORFV exhibit purifying selection. A total of forty recombination events were observed, out of which Ind/MP strains were engaged in twenty-one recombination events indicating this strain can recombine for the generation of new variants.


2021 ◽  
Author(s):  
Matthew M. Hernandez ◽  
Radhika Banu ◽  
Ana S. Gonzalez-Reiche ◽  
Brandon Gray ◽  
Paras Shrestha ◽  
...  

AbstractAs severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate, multiple variants of concern (VOC) have emerged. New variants pose challenges for diagnostic platforms since sequence diversity can alter primer/probe binding sites (PBS), causing false-negative results. The Agena MassARRAY® SARS-CoV-2 Panel utilizes reverse-transcription polymerase chain reaction and mass-spectrometry to detect five multiplex targets across N and ORF1ab genes. Herein, we utilize a dataset of 256 SARS-CoV-2-positive specimens collected between April 11, 2021-August 28, 2021 to evaluate target performance with paired sequencing data. During this timeframe, two targets in the N gene (N2, N3) were subject to the greatest sequence diversity. In specimens with N3 dropout, 69% harbored the Alpha-specific A28095U polymorphism that introduces a 3’-mismatch to the N3 forward PBS and increases risk of target dropout relative to specimens with 28095A (relative risk (RR): 20.02; p<0.0001; 95% Confidence Interval (CI): 11.36-35.72). Furthermore, among specimens with N2 dropout, 90% harbored the Delta-specific G28916U polymorphism that creates a 3’-mismatch to the N2 probe PBS and increases target dropout risk (RR: 11.92; p<0.0001; 95% CI: 8.17-14.06). These findings highlight the robust capability of Agena MassARRAY® SARS-CoV-2 Panel target results to reveal circulating virus diversity and underscore the power of multi-target design to capture VOC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Patrice Bonny ◽  
Julien Schaeffer ◽  
Alban Besnard ◽  
Marion Desdouits ◽  
Jean Justin Essia Ngang ◽  
...  

Many recent pandemics have been recognized as zoonotic viral diseases. While their origins remain frequently unknown, environmental contamination may play an important role in emergence. Thus, being able to describe the viral diversity in environmental samples contributes to understand the key issues in zoonotic transmission. This work describes the use of a metagenomic approach to assess the diversity of eukaryotic RNA viruses in river clams and identify sequences from human or potentially zoonotic viruses. Clam samples collected over 2years were first screened for the presence of norovirus to verify human contamination. Selected samples were analyzed using metagenomics, including a capture of sequences from viral families infecting vertebrates (VirCapSeq-VERT) before Illumina NovaSeq sequencing. The bioinformatics analysis included pooling of data from triplicates, quality filtering, elimination of bacterial and host sequences, and a deduplication step before de novo assembly. After taxonomic assignment, the viral fraction represented 0.8–15% of reads with most sequences (68–87%) remaining un-assigned. Yet, several mammalian RNA viruses were identified. Contigs identified as belonging to the Astroviridae were the most abundant, with some nearly complete genomes of bastrovirus identified. Picobirnaviridae sequences were related to strains infecting bats, and few others to strains infecting humans or other hosts. Hepeviridae sequences were mostly related to strains detected in sponge samples but also strains from swine samples. For Caliciviridae and Picornaviridae, most of identified sequences were related to strains infecting bats, with few sequences close to human norovirus, picornavirus, and genogroup V hepatitis A virus. Despite a need to improve the sensitivity of our method, this study describes a large diversity of RNA virus sequences from clam samples. To describe all viral contaminants in this type of food, and being able to identify the host infected by viral sequences detected, may help to understand some zoonotic transmission events and alert health authorities of possible emergence.


2021 ◽  
Vol 12 (4) ◽  
pp. 878-887
Author(s):  
Fissou Henry Yandai ◽  
Kuan Abdoulaye Traore ◽  
Ali Mahamat Moussa ◽  
Bruno Lalidia Ouoba ◽  
Jean Bienvenue Ouoba ◽  
...  

Only a minority of the patients with acute febrile jaundice evaluated through the Yellow Fever surveillance program were found positive for antibodies against Yellow Fever Virus (YFV). In order to characterize patients with acute febrile jaundice negative for YFV, we collected 255 sera between January to December 2019. We screened for HBV antigens, and antibodies against HCV and HEV. The seroprevalences observed were 10.6% (27/255) for HBV, 2% (5/255) for HCV, 17.3% (44/255) for HEV IgG, 4.3% (11/255) for HEV IgM, and 12.5% (32/255) for both IgG and IgM HEV. Prevalence of HEV was significantly higher in females than males (p < 0.01). HEV IgG prevalence was highest in those 20–29 years old, but the highest incidence rate (IgM positive) was in children 0–9 years old. Exposure to HEV was higher in the Sahelian zone (55.8%, 95% CI: 40.97–70.66) than in the Sudanese zone (30.2%, 95% CI: 24.01–36.37, p = 0.003). The high prevalence rates and hepatitis virus diversity underline the challenge of routine clinical diagnosis in Chad’s Yellow Fever surveillance program.


2021 ◽  
Author(s):  
Jing-Zhe Jiang ◽  
Yi-Fei Fang ◽  
Hong-Ying Wei ◽  
Ying-Xiang Guo ◽  
Li-Ling Yang ◽  
...  

Abstract Background:Viruses are the most abundant biological entities, and they play critical roles in entire ecosystems. Nevertheless, current knowledge about them is no more than 1% of the estimated diversity of the Earth’s virosphere. Oysters are filter-feeding molluscan bivalves and are ideal sentinels for marine virus exploration and viral ecology studies. Results: Here we report a Dataset of Oyster Virome (DOV) that contains 728,784 nonredundant viral operational taxonomic unit (vOTU) contigs and 3,473 high-quality viral genomes, enabling the first comprehensive overview of viral communities in oysters. As in other marine viromes, families Siphoviridae, Podoviridae, and Myoviridae are dominant in the DOV. However, Circoviridae is the most abundant family among the high-quality genomes, indicating that oysters may be their potential hotspots. Despite performing target amplification for RNA genomes, the diversity of RNA viruses was much lower than the diversity of DNA viruses. Notably, most of the vOTUs in the DOV were previously undescribed viruses and could not be clustered with any sequences in three reference datasets. Three approaches (based on references, vOTUs, and auxiliary metabolic genes) consistently showed that host health status, location, and sampling date had potential impacts on virome structures. Conclusions: This study highlights the practicality of oysters for marine virus exploration and provides a new direction to understand the relationship between marine bivalves and the environment.


Sign in / Sign up

Export Citation Format

Share Document