The Dirac operator and the scalar curvature of continuously deformed algebraic varieties

Author(s):  
Christian Bär ◽  
David Bleecker
2007 ◽  
Vol 59 (5) ◽  
pp. 943-965 ◽  
Author(s):  
Felix Finster ◽  
Margarita Kraus

AbstractWe derive a weighted L2-estimate of theWitten spinor in a complete Riemannian spin manifold (Mn, g) of non-negative scalar curvature which is asymptotically Schwarzschild. The interior geometry of M enters this estimate only via the lowest eigenvalue of the square of the Dirac operator on a conformal compactification of M.


Author(s):  
Claire Voisin

This book provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The book is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by the author. It focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by the author looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others.


2020 ◽  
Vol 5 (3) ◽  
pp. 639-676
Author(s):  
Michael Hallam ◽  
Varghese Mathai

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Jacob Sonnenschein ◽  
Dorin Weissman

Abstract Classical rotating closed string are folded strings. At the folding points the scalar curvature associated with the induced metric diverges. As a consequence one cannot properly quantize the fluctuations around the classical solution since there is no complete set of normalizable eigenmodes. Furthermore in the non-critical effective string action of Polchinski and Strominger, there is a divergence associated with the folds. We overcome this obstacle by putting a massive particle at each folding point which can be used as a regulator. Using this method we compute the spectrum of quantum fluctuations around the rotating string and the intercept of the leading Regge trajectory. The results we find are that the intercepts are a = 1 and a = 2 for the open and closed string respectively, independent of the target space dimension. We argue that in generic theories with an effective string description, one can expect corrections from finite masses associated with either the endpoints of an open string or the folding points on a closed string. We compute explicitly the corrections in the presence of these masses.


Sign in / Sign up

Export Citation Format

Share Document