A generalized Weierstrass representation for a submanifold $S$ in $\mathbb{E}^n$ arising from the submanifold Dirac operator

Author(s):  
Shigeki Matsutani
Author(s):  
D. Kurmanbayev ◽  
K. Yesmakhanova

The minimal surface (see [1]) is determined using the Weierstrass representation in three-dimensional space. The solution of the Dirac equation [2] in terms of spinors coincides with the representations of this surface with conservation of isothermal coordinates. The equation represented through the Dirac operator, which is included in the Manakov’s L, A, B triple [3] as equivalent to the modified Veselov-Novikov equation (mVN) [4]. The potential 𝑈 of the Dirac operator is the potential of representing a minimal surface. New solutions of the mVN equation are constructed using the pre-known potentials of the Dirac operator and this algorithm is said to be Moutard transformations [5]. Firstly, the geometric meaning of these transformations which found in [6], [7], gives us the definition of the inversion of the minimal surface, further after finding the exact solutions of the mVN equation, we can represent the inverted surfaces. And these representations of the new potential determine the soliton deformation [8], [9]. In 2014, blowing-up solutions to the mVN equation were obtained using a rigid translation of the initial Enneper surface in [6]. Further results were obtained for the second-order Enneper surface [10]. Now the soliton deformation of an inverted catenoid is found by smooth translation along the second coordinate axis. In this paper, in order to determine catenoid inversions, it is proposed to find holomorphic objects as Gauss maps and height differential [11]; the soliton deformation of the inverted catenoid is obtained; particular solution of modified Karteweg-de Vries (KdV) equation is found that give some representation of KdV surface [12],[13].


2005 ◽  
Vol 315 (2) ◽  
pp. 467-487 ◽  
Author(s):  
A. Kirchberg ◽  
J.D. Länge ◽  
A. Wipf
Keyword(s):  

Author(s):  
Piero D’Ancona ◽  
Luca Fanelli ◽  
Nico Michele Schiavone

AbstractWe prove that the eigenvalues of the n-dimensional massive Dirac operator $${\mathscr {D}}_0 + V$$ D 0 + V , $$n\ge 2$$ n ≥ 2 , perturbed by a potential V, possibly non-Hermitian, are contained in the union of two disjoint disks of the complex plane, provided V is sufficiently small with respect to the mixed norms $$L^1_{x_j} L^\infty _{{\widehat{x}}_j}$$ L x j 1 L x ^ j ∞ , for $$j\in \{1,\dots ,n\}$$ j ∈ { 1 , ⋯ , n } . In the massless case, we prove instead that the discrete spectrum is empty under the same smallness assumption on V, and in particular the spectrum coincides with the spectrum of the unperturbed operator: $$\sigma ({\mathscr {D}}_0+V)=\sigma ({\mathscr {D}}_0)={\mathbb {R}}$$ σ ( D 0 + V ) = σ ( D 0 ) = R . The main tools used are an abstract version of the Birman–Schwinger principle, which allows in particular to control embedded eigenvalues, and suitable resolvent estimates for the Schrödinger operator.


Author(s):  
Moulay-Tahar Benameur ◽  
Alan L. Carey

AbstractFor a single Dirac operator on a closed manifold the cocycle introduced by Jaffe-Lesniewski-Osterwalder [19] (abbreviated here to JLO), is a representative of Connes' Chern character map from the K-theory of the algebra of smooth functions on the manifold to its entire cyclic cohomology. Given a smooth fibration of closed manifolds and a family of generalized Dirac operators along the fibers, we define in this paper an associated bivariant JLO cocycle. We then prove that, for any l ≥ 0, our bivariant JLO cocycle is entire when we endow smoooth functions on the total manifold with the Cl+1 topology and functions on the base manifold with the Cl topology. As a by-product of our theorem, we deduce that the bivariant JLO cocycle is entire for the Fréchet smooth topologies. We then prove that our JLO bivariant cocycle computes the Chern character of the Dai-Zhang higher spectral flow.


2008 ◽  
Vol 125 (3) ◽  
pp. 383-409 ◽  
Author(s):  
Nicolas Ginoux
Keyword(s):  

2002 ◽  
Vol 13 (05) ◽  
pp. 533-548 ◽  
Author(s):  
NICOLAS GINOUX ◽  
BERTRAND MOREL

We give lower bounds for the eigenvalues of the submanifold Dirac operator in terms of intrinsic and extrinsic curvature expressions. We also show that the limiting cases give rise to a class of spinor fields generalizing that of Killing spinors. We conclude by translating these results in terms of intrinsic twisted Dirac operators.


Sign in / Sign up

Export Citation Format

Share Document