Maximal and primitive elements in baby Verma modules for type 𝐵₂

Author(s):  
Nanhua Xi
Author(s):  
Nicoletta Cantarini ◽  
Fabrizio Caselli ◽  
Victor Kac

AbstractGiven a Lie superalgebra $${\mathfrak {g}}$$ g with a subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 , and a finite-dimensional irreducible $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 -module F, the induced $${\mathfrak {g}}$$ g -module $$M(F)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal {U}}({\mathfrak {g}}_{\ge 0})}F$$ M ( F ) = U ( g ) ⊗ U ( g ≥ 0 ) F is called a finite Verma module. In the present paper we classify the non-irreducible finite Verma modules over the largest exceptional linearly compact Lie superalgebra $${\mathfrak {g}}=E(5,10)$$ g = E ( 5 , 10 ) with the subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 of minimal codimension. This is done via classification of all singular vectors in the modules M(F). Besides known singular vectors of degree 1,2,3,4 and 5, we discover two new singular vectors, of degrees 7 and 11. We show that the corresponding morphisms of finite Verma modules of degree 1,4,7, and 11 can be arranged in an infinite number of bilateral infinite complexes, which may be viewed as “exceptional” de Rham complexes for E(5, 10).


2017 ◽  
Vol 24 (02) ◽  
pp. 285-296 ◽  
Author(s):  
Wenlan Ruan ◽  
Honglian Zhang ◽  
Jiancai Sun

We study the structure of the generalized 2-dim affine-Virasoro algebra, and describe its automorphism group. Furthermore, we also determine the irreducibility of a Verma module over the generalized 2-dim affine-Virasoro algebra.


2007 ◽  
Vol 06 (05) ◽  
pp. 779-787 ◽  
Author(s):  
SONIA L'INNOCENTE ◽  
MIKE PREST

Let M be a Verma module over the Lie algebra, sl 2(k), of trace zero 2 × 2 matrices over the algebraically closed field k. We show that the ring, RM, of definable scalars of M is a von Neumann regular ring and that the canonical map from U( sl 2(k)) to RM is an epimorphism of rings. We also describe the Ziegler closure of M. The proofs make use of ideas from the model theory of modules.


2018 ◽  
Vol 51 ◽  
pp. 388-406 ◽  
Author(s):  
Stephen D. Cohen ◽  
Tomás Oliveira e Silva ◽  
Nicole Sutherland ◽  
Tim Trudgian

10.37236/102 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
A. I. Molev

The double Schur functions form a distinguished basis of the ring $\Lambda(x\!\parallel\!a)$ which is a multiparameter generalization of the ring of symmetric functions $\Lambda(x)$. The canonical comultiplication on $\Lambda(x)$ is extended to $\Lambda(x\!\parallel\!a)$ in a natural way so that the double power sums symmetric functions are primitive elements. We calculate the dual Littlewood–Richardson coefficients in two different ways thus providing comultiplication rules for the double Schur functions. We also prove multiparameter analogues of the Cauchy identity. A new family of Schur type functions plays the role of a dual object in the identities. We describe some properties of these dual Schur functions including a combinatorial presentation and an expansion formula in terms of the ordinary Schur functions. The dual Littlewood–Richardson coefficients provide a multiplication rule for the dual Schur functions.


Sign in / Sign up

Export Citation Format

Share Document