Invariant measures on nilpotent orbits associated with holomorphic discrete series
Let G R G_\mathbb R be a real form of a complex, semisimple Lie group G G . Assume G R G_\mathbb R has holomorphic discrete series. Let W \mathcal W be a nilpotent coadjoint G R G_\mathbb R -orbit contained in the wave front set of a holomorphic discrete series. We prove a limit formula, expressing the canonical measure on W \mathcal W as a limit of canonical measures on semisimple coadjoint orbits, where the parameter of orbits varies over the positive chamber defined by the Borel subalgebra associated with holomorphic discrete series.