scholarly journals Representations of certain solvable Lie groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a Semisimple Lie group

1973 ◽  
Vol 13 (4) ◽  
pp. 324-389 ◽  
Author(s):  
Hugo Rossi ◽  
Michèle Vergne
1979 ◽  
Vol 31 (4) ◽  
pp. 836-844 ◽  
Author(s):  
Joe Repka

We discuss the decomposition of tensor products of holomorphic discrete series representations, generalizing a technique used in [9] for representations of SL2(R), based on a suggestion of Roger Howe. In the case of two representations with highest weights, the discussion is entirely algebraic, and is best formulated in the context of generalized Verma modules (see § 3). In the case when one representation has a highest weight and the other a lowest weight, the approach is more analytic, relying on the realization of these representations on certain spaces of holomorphic functions.For a simple group, these two cases exhaust the possibilities; for a nonsimple group, one has to piece together representations on the various factors.The author wishes to thank Roger Howe and Jim Lepowsky for very helpful conversations, and Nolan Wallach for pointing out the work of Eugene Gutkin (Thesis, Brandeis University, 1978), from which some of the results of this paper can be read off as easy corollaries.


2021 ◽  
Vol 25 (24) ◽  
pp. 732-747
Author(s):  
Mladen Božičević

Let G R G_\mathbb R be a real form of a complex, semisimple Lie group G G . Assume G R G_\mathbb R has holomorphic discrete series. Let W \mathcal W be a nilpotent coadjoint G R G_\mathbb R -orbit contained in the wave front set of a holomorphic discrete series. We prove a limit formula, expressing the canonical measure on W \mathcal W as a limit of canonical measures on semisimple coadjoint orbits, where the parameter of orbits varies over the positive chamber defined by the Borel subalgebra associated with holomorphic discrete series.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


Author(s):  
Jorge Lauret ◽  
Cynthia E Will

Abstract We study the natural functional $F=\frac {\operatorname {scal}^2}{|\operatorname {Ric}|^2}$ on the space of all non-flat left-invariant metrics on all solvable Lie groups of a given dimension $n$. As an application of properties of the beta operator, we obtain that solvsolitons are the only global maxima of $F$ restricted to the set of all left-invariant metrics on a given unimodular solvable Lie group, and beyond the unimodular case, we obtain the same result for almost-abelian Lie groups. Many other aspects of the behavior of $F$ are clarified.


Sign in / Sign up

Export Citation Format

Share Document