complex semisimple
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 25 (24) ◽  
pp. 732-747
Author(s):  
Mladen Božičević

Let G R G_\mathbb R be a real form of a complex, semisimple Lie group G G . Assume G R G_\mathbb R has holomorphic discrete series. Let W \mathcal W be a nilpotent coadjoint G R G_\mathbb R -orbit contained in the wave front set of a holomorphic discrete series. We prove a limit formula, expressing the canonical measure on W \mathcal W as a limit of canonical measures on semisimple coadjoint orbits, where the parameter of orbits varies over the positive chamber defined by the Borel subalgebra associated with holomorphic discrete series.


2021 ◽  
Vol 40 (3) ◽  
pp. 697-709
Author(s):  
Youness Hadder ◽  
Abdelkhalek El Amrani

Let A be a commutative complex semisimple Banach algebra. In this paper we continue the study of kh(soc(A)). Thus we will give, among other things, some new characterizations of this ideal in terms of the closure, in the spectral radius norm, of the socle of A.


Author(s):  
Yan Li ◽  
Zhenye Li

Abstract Let $G$ be a complex semisimple group. In this note, we give a method to classify $\mathbb Q$-Fano compactifications of $G$. We will prove that there are only finitely many $\mathbb Q$-Fano $G$-compactifications that admit (singular) Kähler–Einstein metrics. As an application, this improves a former result in [ 19].


Author(s):  
Christian Voigt

Abstract We show that complex semisimple quantum groups, that is, Drinfeld doubles of $q$-deformations of compact semisimple Lie groups, satisfy a categorical version of the Baum–Connes conjecture with trivial coefficients. Our approach, based on homological algebra in triangulated categories, is compatible with the previously studied deformation picture of the assembly map and allows us to define an assembly map with arbitrary coefficients for these quantum groups.


10.37236/9873 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Hajime Tanaka ◽  
Tao Wang

The Terwilliger algebra $T(x)$ of a finite connected simple graph $\Gamma$ with respect to a vertex $x$ is the complex semisimple matrix algebra generated by the adjacency matrix $A$ of $\Gamma$ and the diagonal matrices $E_i^*(x)=\operatorname{diag}(v_i)$ $(i=0,1,2,\dots)$, where $v_i$ denotes the characteristic vector of the set of vertices at distance $i$ from $x$. The twisted Grassmann graph $\tilde{J}_q(2D+1,D)$ discovered by Van Dam and Koolen in 2005 has two orbits of the automorphism group on its vertex set, and it is known that one of the orbits has the property that $T(x)$ is thin whenever $x$ is chosen from it, i.e., every irreducible $T(x)$-module $W$ satisfies $\dim E_i^*(x)W\leqslant 1$ for all $i$. In this paper, we determine all the irreducible $T(x)$-modules of $\tilde{J}_q(2D+1,D)$ for this "thin" case.


Author(s):  
Faten Abu Shoga

A real form G0 of a complex semisimple Lie group G has only finitely many orbits in any given compact G-homogeneous projective algebraic manifold Z=G/Q. A maximal compact subgroup K0 of G0 has special orbits C which are complex submanifolds in the open orbits of G0. These special orbits C are characterized as the closed orbits in Z of the complexification K of K0. These are referred to as cycles. The cycles intersect Schubert varieties S transversely at finitely many points. Describing these points and their multiplicities was carried out for all real forms of SLn,ℂ by Brecan (Brecan, 2014) and (Brecan, 2017) and for the other real forms by Abu-Shoga (Abu-Shoga, 2017) and Huckleberry (Abu-Shoga and Huckleberry). In the present paper, we deal with the real form SOp,q acting on the SO (2n, C)-manifold of maximal isotropic full flags. We give a precise description of the relevant Schubert varieties in terms of certain subsets of the Weyl group and compute their total number. Furthermore, we give an explicit description of the points of intersection in terms of flags and their number. The results in the case of G/Q for all real forms will be given by Abu-Shoga and Huckleberry.


2020 ◽  
pp. 1-30
Author(s):  
Peter Crooks ◽  
Maarten van Pruijssen

Abstract This work is concerned with Bielawski’s hyperkähler slices in the cotangent bundles of homogeneous affine varieties. One can associate such a slice with the data of a complex semisimple Lie group  $G$ , a reductive subgroup $H\subseteq G$ , and a Slodowy slice $S\subseteq \mathfrak{g}:=\text{Lie}(G)$ , defining it to be the hyperkähler quotient of $T^{\ast }(G/H)\times (G\times S)$ by a maximal compact subgroup of  $G$ . This hyperkähler slice is empty in some of the most elementary cases (e.g., when $S$ is regular and $(G,H)=(\text{SL}_{n+1},\text{GL}_{n})$ , $n\geqslant 3$ ), prompting us to seek necessary and sufficient conditions for non-emptiness. We give a spherical-geometric characterization of the non-empty hyperkähler slices that arise when $S=S_{\text{reg}}$ is a regular Slodowy slice, proving that non-emptiness is equivalent to the so-called $\mathfrak{a}$ -regularity of $(G,H)$ . This $\mathfrak{a}$ -regularity condition is formulated in several equivalent ways, one being a concrete condition on the rank and complexity of $G/H$ . We also provide a classification of the $\mathfrak{a}$ -regular pairs $(G,H)$ in which $H$ is a reductive spherical subgroup. Our arguments make essential use of Knop’s results on moment map images and Losev’s algorithm for computing Cartan spaces.


Sign in / Sign up

Export Citation Format

Share Document