Dirichlet series, functional equations, and periods

1980 ◽  
Vol 77 ◽  
pp. 145-166 ◽  
Author(s):  
Toshiaki Suzuki

During 1934-1936, W. L. Ferrar investigated the relation between summation formulae and Dirichlet series with functional equations, inspired by Voronoi’s works (1904) on summation formula with respect to the numbers of divisors. In [11] A. Weil showed that the automorphic properties of theta series are expressed by generalized Poisson summation formulae with respect to the so-called Weil representation. On the other hand, T. Kubota, in his study of the reciprocity law in a number field, defined a generalized theta series and a generalized Weil type representation of SL(2, C) and obtained similar results to those of A. Weil (1970-1976, [5], [6], [7]). The methods, used by W. L. Ferrar and T. Kubota, to obtain (generalized Poisson) summation formulae depend similarly on functional equations of Dirichlet series (attached to the generalized theta series).


2010 ◽  
Vol 147 (2) ◽  
pp. 355-374 ◽  
Author(s):  
Valentin Blomer

AbstractFor two real characters ψ,ψ′ of conductor dividing 8 define where $\chi _d = (\frac {d}{.})$ and the subscript 2 denotes the fact that the Euler factor at 2 has been removed. These double Dirichlet series can be extended to $\Bbb {C}^2$ possessing a group of functional equations isomorphic to D12. The convexity bound for Z(s,w;ψ,ψ′) is |sw(s+w)|1/4+ε for ℜs=ℜw=1/2. It is proved that Moreover, the following mean square Lindelöf-type bound holds: for any Y1,Y2≥1.


Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics. These interesting functions may be described as Whittaker coefficients of Eisenstein series on metaplectic groups, but this characterization doesn't readily lead to an explicit description of the coefficients. The coefficients may be expressed as sums over Kashiwara's crystals, which are combinatorial analogs of characters of irreducible representations of Lie groups. For Cartan Type A, there are two distinguished descriptions, and if these are known to be equal, the analytic properties of the Dirichlet series follow. Proving the equality of the two combinatorial definitions of the Weyl group multiple Dirichlet series requires the comparison of two sums of products of Gauss sums over lattice points in polytopes. Through a series of surprising combinatorial reductions, this is accomplished. The book includes expository material about crystals, deformations of the Weyl character formula, and the Yang–Baxter equation.


1975 ◽  
Vol 18 (1) ◽  
pp. 87-94 ◽  
Author(s):  
V. Venugopal Rao

Let f(τ) be a complex valued function, defined and analytic in the upper half of the complex τ plane (τ = x+iy, y > 0), such that f(τ + λ)= f(τ) where λ is a positive real number and f(—1/τ) = γ(—iτ)kf(τ), k being a complex number. The function (—iτ)k is defined as exp(k log(—iτ) where log(—iτ) has the real value when —iτ is positive. Every such function is said to have signature (λ, k, γ) in the sense of E. Hecke [1] and has a Fourier expansion of the type f(τ) = a0 + σ an exp(2πin/λ), (n = 1,2,…), if we further assume that f(τ) = O(|y|-c) as y tends to zero uniformly for all x, c being a positive number.


2016 ◽  
Vol 152 (12) ◽  
pp. 2503-2523 ◽  
Author(s):  
Ian Whitehead

We define a multiple Dirichlet series whose group of functional equations is the Weyl group of the affine Kac–Moody root system $\widetilde{A}_{n}$, generalizing the theory of multiple Dirichlet series for finite Weyl groups. The construction is over the rational function field $\mathbb{F}_{q}(t)$, and is based upon four natural axioms from algebraic geometry. We prove that the four axioms yield a unique series with meromorphic continuation to the largest possible domain and the desired infinite group of symmetries.


Sign in / Sign up

Export Citation Format

Share Document