2015 ◽  
Vol 444 ◽  
pp. 81-123 ◽  
Author(s):  
Gebhard Böckle ◽  
Ann-Kristin Juschka

2014 ◽  
Vol 412 ◽  
pp. 87-106
Author(s):  
Frauke M. Bleher ◽  
Giovanna Llosent ◽  
Jennifer B. Schaefer

2019 ◽  
Vol 141 (1) ◽  
pp. 119-167 ◽  
Author(s):  
Patrick B. Allen
Keyword(s):  

2014 ◽  
Vol 151 (3) ◽  
pp. 397-415 ◽  
Author(s):  
Joël Bellaïche ◽  
Chandrashekhar Khare

AbstractIn this paper, we study the structure of the local components of the (shallow, i.e. without $U_{p}$) Hecke algebras acting on the space of modular forms modulo $p$ of level $1$, and relate them to pseudo-deformation rings. In many cases, we prove that those local components are regular complete local algebras of dimension $2$, generalizing a recent result of Nicolas and Serre for the case $p=2$.


Sign in / Sign up

Export Citation Format

Share Document