scholarly journals Unique Continuation for First Order Systems of PDEs

2021 ◽  
Vol 68 (09) ◽  
pp. 1
Author(s):  
Shiferaw Berhanu
2020 ◽  
Vol 26 ◽  
pp. 14
Author(s):  
Yan Cui ◽  
Camille Laurent ◽  
Zhiqiang Wang

In this paper, we study the observability and controllability of wave equations coupled by first or zero order terms on a compact manifold. We adopt the approach in Dehman-Lebeau’s paper [B. Dehman and G. Lebeau, SIAM J. Control Optim. 48 (2009) 521–550.] to prove that: the weak observability inequality holds for wave equations coupled by first order terms on compact manifold without boundary if and only if a class of ordinary differential equations related to the symbol of the first order terms along the Hamiltonian flow are exactly controllable. We also compute the higher order part of the observability constant and the observation time. By duality, we obtain the controllability of the dual control system in a finite co-dimensional space. This gives the full controllability under the assumption of unique continuation of eigenfunctions. Moreover, these results can be applied to the systems of wave equations coupled by zero order terms of cascade structure after an appropriate change of unknowns and spaces. Finally, we provide some concrete examples as applications where the unique continuation property indeed holds.


2019 ◽  
Vol 42 ◽  
Author(s):  
Daniel J. Povinelli ◽  
Gabrielle C. Glorioso ◽  
Shannon L. Kuznar ◽  
Mateja Pavlic

Abstract Hoerl and McCormack demonstrate that although animals possess a sophisticated temporal updating system, there is no evidence that they also possess a temporal reasoning system. This important case study is directly related to the broader claim that although animals are manifestly capable of first-order (perceptually-based) relational reasoning, they lack the capacity for higher-order, role-based relational reasoning. We argue this distinction applies to all domains of cognition.


1984 ◽  
Vol 75 ◽  
pp. 461-469 ◽  
Author(s):  
Robert W. Hart

ABSTRACTThis paper models maximum entropy configurations of idealized gravitational ring systems. Such configurations are of interest because systems generally evolve toward an ultimate state of maximum randomness. For simplicity, attention is confined to ultimate states for which interparticle interactions are no longer of first order importance. The planets, in their orbits about the sun, are one example of such a ring system. The extent to which the present approximation yields insight into ring systems such as Saturn's is explored briefly.


Author(s):  
Richard J. Spontak ◽  
Steven D. Smith ◽  
Arman Ashraf

Block copolymers are composed of sequences of dissimilar chemical moieties covalently bonded together. If the block lengths of each component are sufficiently long and the blocks are thermodynamically incompatible, these materials are capable of undergoing microphase separation, a weak first-order phase transition which results in the formation of an ordered microstructural network. Most efforts designed to elucidate the phase and configurational behavior in these copolymers have focused on the simple AB and ABA designs. Few studies have thus far targeted the perfectly-alternating multiblock (AB)n architecture. In this work, two series of neat (AB)n copolymers have been synthesized from styrene and isoprene monomers at a composition of 50 wt% polystyrene (PS). In Set I, the total molecular weight is held constant while the number of AB block pairs (n) is increased from one to four (which results in shorter blocks). Set II consists of materials in which the block lengths are held constant and n is varied again from one to four (which results in longer chains). Transmission electron microscopy (TEM) has been employed here to investigate the morphologies and phase behavior of these materials and their blends.


1991 ◽  
Vol 3 (1) ◽  
pp. 235-253 ◽  
Author(s):  
L. D. Philipp ◽  
Q. H. Nguyen ◽  
D. D. Derkacht ◽  
D. J. Lynch ◽  
A. Mahmood

Sign in / Sign up

Export Citation Format

Share Document