systems of pdes
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 21)

H-INDEX

14
(FIVE YEARS 0)

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Khaled Bouazzaoui ◽  
Mohammed Aiboudi ◽  
Sameh Elsayed Ahmed

In this paper, we will study the existence of strong solutions for a nonlinear system of partial differential equations arising in convective flow, modeling a phenomenon of mixed convection created by a heated and diving plate in a porous medium saturated with a fluid. The main tools are Schäfer’s fixed-point theorem, the Fredholm alternative, and some theorems on second-order elliptic operators.


2021 ◽  
pp. 3061-3070
Author(s):  
L. N. M. Tawfiq ◽  
Z. H. Kareem

     This paper presents an analysis solution for systems of partial differential equations using a new modification of the decomposition method to overcome the computational difficulties. Convergence of series solution was discussed with two illustrated examples, and the method showed a high-precision, being a fast approach to solve the non-linear system of PDEs with initial conditions. There is no need to convert the nonlinear terms into the linear ones due to the Adomian polynomials. The method does not require any discretization or assumption for a small parameter to be present in the problem. The steps of the suggested method are easily implemented, with high accuracy and rapid convergence to the exact solution, compared with other methods that can be used to solve systems of PDEs.


Author(s):  
Alessandro Fonda ◽  
Giuliano Klun ◽  
Andrea Sfecci

We prove existence results for systems of boundary value problems involving elliptic second-order differential operators. The assumptions involve lower and upper solutions, which may be either well-ordered, or not at all. The results are stated in an abstract framework, and can be translated also for systems of parabolic type.


Computability ◽  
2021 ◽  
pp. 1-18
Author(s):  
Svetlana Selivanova ◽  
Victor Selivanov

We establish upper bounds on bit complexity of computing solution operators for symmetric hyperbolic systems of PDEs, combining symbolic and approximate algorithms to obtain the solutions with guaranteed prescribed precision. Restricting to algebraic real inputs allows us to use the classical (“discrete”) bit complexity concept.


Author(s):  
Levon K. Babadzanjanz ◽  
◽  
Irina Yu. Pototskaya ◽  
Yulia Yu. Pupysheva ◽  
◽  
...  

Many of total systems of PDEs can be reduced to the polynomial form. As was shown by various authors, one of the best methods for the numerical solution of the initial value problem for ODE systems is the Taylor Series Method (TSM). In the article, the authors consider the Cauchy problem for the total polynomial PDE system, obtain the recurrence formulas for Taylor coefficients, and then formulate and prove a theorem on the accuracy of its solutions by TSM.


Author(s):  
David M. J. Calderbank ◽  
Boris Kruglikov

AbstractWe prove that the existence of a dispersionless Lax pair with spectral parameter for a nondegenerate hyperbolic second order partial differential equation (PDE) is equivalent to the canonical conformal structure defined by the symbol being Einstein–Weyl on any solution in 3D, and self-dual on any solution in 4D. The first main ingredient in the proof is a characteristic property for dispersionless Lax pairs. The second is the projective behaviour of the Lax pair with respect to the spectral parameter. Both are established for nondegenerate determined systems of PDEs of any order. Thus our main result applies more generally to any such PDE system whose characteristic variety is a quadric hypersurface.


2020 ◽  
Vol 85 (1) ◽  
Author(s):  
Tobias Linn ◽  
Kai Bittner ◽  
Hans Georg Brachtendorf ◽  
Christoph Jungemann

Abstract Instabilities of electron plasma waves in high-mobility semiconductor devices have recently attracted a lot of attention as a possible candidate for closing the THz gap. Conventional moments-based transport models usually neglect time derivatives in the constitutive equations for vectorial quantities, resulting in parabolic systems of partial differential equations (PDE). To describe plasma waves however, such time derivatives need to be included, resulting in hyperbolic rather than parabolic systems of PDEs; thus the fundamental nature of these equation systems is changed completely. Additional nonlinear terms render the existing numerical stabilization methods for semiconductor simulation practically useless. On the other hand there are plenty of numerical methods for hyperbolic systems of PDEs in the form of conservation laws. Standard numerical schemes for conservation laws, however, are often either incapable of correctly handling the large source terms present in semiconductor devices due to built-in electric fields, or rely heavily on variable transformations which are specific to the equation system at hand (e.g. the shallow water equations), and can not be generalized easily to different equations. In this paper we develop a novel well-balanced numerical scheme for hyperbolic systems of PDEs with source terms and apply it to a simple yet non-linear electron transport model.


Sign in / Sign up

Export Citation Format

Share Document