Left-invariant conformal vector fields on non-solvable Lie groups

Author(s):  
Hui Zhang ◽  
Zhiqi Chen ◽  
Ju Tan
2021 ◽  
Vol 18 (2) ◽  
Author(s):  
Mohamed Tahar Kadaoui Abbassi ◽  
Noura Amri ◽  
Cornelia-Livia Bejan

2021 ◽  
Vol 10 (4) ◽  
pp. 2141-2147
Author(s):  
X.F. Sharipov ◽  
B. Boymatov ◽  
N. Abriyev

Geometry of orbit is a subject of many investigations because it has important role in many branches of mathematics such as dynamical systems, control theory. In this paper it is studied geometry of orbits of conformal vector fields. It is shown that orbits of conformal vector fields are integral submanifolds of completely integrable distributions. Also for Euclidean space it is proven that if all orbits have the same dimension they are closed subsets.


2018 ◽  
Vol 18 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Ju Tan ◽  
Shaoqiang Deng

AbstractIn this paper, we consider a special class of solvable Lie groups such that for any x, y in their Lie algebras, [x, y] is a linear combination of x and y. We investigate the harmonicity properties of invariant vector fields of this kind of Lorentzian Lie groups. It is shown that any invariant unit time-like vector field is spatially harmonic. Moreover, we determine all vector fields which are critical points of the energy functional restricted to the space of smooth vector fields.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1354 ◽  
Author(s):  
Hassan Almusawa ◽  
Ryad Ghanam ◽  
Gerard Thompson

In this investigation, we present symmetry algebras of the canonical geodesic equations of the indecomposable solvable Lie groups of dimension five, confined to algebras A 5 , 7 a b c to A 18 a . For each algebra, the related system of geodesics is provided. Moreover, a basis for the associated Lie algebra of the symmetry vector fields, as well as the corresponding nonzero brackets, are constructed and categorized.


Sign in / Sign up

Export Citation Format

Share Document