scholarly journals Classification of Symmetry Lie Algebras of the Canonical Geodesic Equations of Five-Dimensional Solvable Lie Algebras

Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1354 ◽  
Author(s):  
Hassan Almusawa ◽  
Ryad Ghanam ◽  
Gerard Thompson

In this investigation, we present symmetry algebras of the canonical geodesic equations of the indecomposable solvable Lie groups of dimension five, confined to algebras A 5 , 7 a b c to A 18 a . For each algebra, the related system of geodesics is provided. Moreover, a basis for the associated Lie algebra of the symmetry vector fields, as well as the corresponding nonzero brackets, are constructed and categorized.

2020 ◽  
pp. 14-14
Author(s):  
Tijana Sukilovic

In this paper the complete classification of left invariant metrics of arbitrary signature on solvable Lie groups is given. By identifying the Lie algebra with the algebra of left invariant vector fields on the corresponding Lie group ??, the inner product ??,?? on g = Lie G extends uniquely to a left invariant metric ?? on the Lie group. Therefore, the classification problem is reduced to the problem of classification of pairs (g, ??,??) known as the metric Lie algebras. Although two metric algebras may be isometric even if the corresponding Lie algebras are non-isomorphic, this paper will show that in the 4-dimensional solvable case isometric means isomorphic. Finally, the curvature properties of the obtained metric algebras are considered and, as a corollary, the classification of flat, locally symmetric, Ricciflat, Ricci-parallel and Einstein metrics is also given.


2018 ◽  
Vol 18 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Ju Tan ◽  
Shaoqiang Deng

AbstractIn this paper, we consider a special class of solvable Lie groups such that for any x, y in their Lie algebras, [x, y] is a linear combination of x and y. We investigate the harmonicity properties of invariant vector fields of this kind of Lorentzian Lie groups. It is shown that any invariant unit time-like vector field is spatially harmonic. Moreover, we determine all vector fields which are critical points of the energy functional restricted to the space of smooth vector fields.


Author(s):  
Artem Atanov ◽  
Alexander Loboda

This paper studies holomorphic homogeneous real hypersurfaces in C3 associated with the unique non-solvable indecomposable 5-dimensional Lie algebra 𝑔5 (in accordance with Mubarakzyanov’s notation). Unlike many other 5-dimensional Lie algebras with “highly symmetric” orbits, non-degenerate orbits of 𝑔5 are “simply homogeneous”, i.e. their symmetry algebras are exactly 5-dimensional. All those orbits are equivalent (up to holomorphic equivalence) to the specific indefinite algebraic surface of the fourth order. The proofs of those statements involve the method of holomorphic realizations of abstract Lie algebras. We use the approach proposed by Beloshapka and Kossovskiy, which is based on the simultaneous simplification of several basis vector fields. Three auxiliary lemmas formulated in the text let us straighten two basis vector fields of 𝑔5 and significantly simplify the third field. There is a very important assumption which is used in our considerations: we suppose that all orbits of 𝑔5 are Levi non-degenerate. Using the method of holomorphic realizations, it is easy to show that one need only consider two sets of holomorphic vector fields associated with 𝑔5. We prove that only one of these sets leads to Levi non-degenerate orbits. Considering the commutation relations of 𝑔5, we obtain a simplified basis of vector fields and a corresponding integrable system of partial differential equations. Finally, we get the equation of the orbit (unique up to holomorphic transformations) (𝑣 − 𝑥2𝑦1)2 + 𝑦2 1𝑦2 2 = 𝑦1, which is the equation of the algebraic surface of the fourth order with the indefinite Levi form. Then we analyze the obtained equation using the method of Moser normal forms. Considering the holomorphic invariant polynomial of the fourth order corresponding to our equation, we can prove (using a number of results obtained by A.V. Loboda) that the upper bound of the dimension of maximal symmetry algebra associated with the obtained orbit is equal to 6. The holomorphic invariant polynomial mentioned above differs from the known invariant polynomials of Cartan’s and Winkelmann’s types corresponding to other hypersurfaces with 6- dimensional symmetry algebras.


2017 ◽  
Vol 2018 (7) ◽  
pp. 2070-2098 ◽  
Author(s):  
Misha V Feigin ◽  
Alexander P Veselov

Abstract It is shown that the description of certain class of representations of the holonomy Lie algebra $\mathfrak g_{\Delta}$ associated with hyperplane arrangement $\Delta$ is essentially equivalent to the classification of $\vee$-systems associated with $\Delta.$ The flat sections of the corresponding $\vee$-connection can be interpreted as vector fields, which are both logarithmic and gradient. We conjecture that the hyperplane arrangement of any $\vee$-system is free in Saito's sense and show this for all known $\vee$-systems and for a special class of $\vee$-systems called harmonic, which includes all Coxeter systems. In the irreducible Coxeter case the potentials of the corresponding gradient vector fields turn out to be Saito flat coordinates, or their one-parameter deformations. We give formulas for these deformations as well as for the potentials of the classical families of harmonic $\vee$-systems.


Author(s):  
Sofiane Bouarroudj ◽  
Alexei Lebedev ◽  
Dimitry Leites ◽  
Irina Shchepochkina

Abstract All results concern characteristic 2. We describe two procedures; each of which to every simple Lie algebra assigns a simple Lie superalgebra. We prove that every simple finite-dimensional Lie superalgebra is obtained as the result of one of these procedures. For Lie algebras, in addition to the known “classical” restrictedness, we introduce a (2,4)-structure on the two non-alternating series: orthogonal and Hamiltonian vector fields. For Lie superalgebras, the classical restrictedness of Lie algebras has two analogs: a $2|4$-structure, which is a direct analog of the classical restrictedness, and a novel $2|2$-structure—one more analog, a $(2,4)|4$-structure on Lie superalgebras is the analog of (2,4)-structure on Lie algebras known only for non-alternating orthogonal and Hamiltonian series.


Author(s):  
Manjit Singh ◽  
Rajesh Kumar Gupta

AbstractOptimal classifications of Lie algebras of some well-known equations under their group of inner automorphism are re-considered. By writing vector fields of some known Lie algebras in the abstract format, we have proved that there exist explicit isomorphism between Lie algebras and sub-algebras which have already been classified. The isomorphism between Lie algebras is useful in the sense that the classifications of sub-algebras of dimension ≤4 have previously been carried out in literature. These already available classifications can be used to write classification of any Lie algebra of dimension ≤4. As an example, the explicit isomorphism between Lie algebra of variant Boussinesq system and sub-algebra ${A}_{3,5}^{1/2}$ is proved, and subsequently, optimal sub-algebras up to dimension four are obtained. Besides this, some other examples of Lie algebras are also considered for explicit isomorphism.


Author(s):  
C. J. Atkin

In a long sequence of notes in the Comptes Rendus and elsewhere, and in the papers [1], [2], [3], [6], [7], Lichnerowicz and his collaborators have studied the ‘classical infinite-dimensional Lie algebras’, their derivations, automorphisms, co-homology, and other properties. The most familiar of these algebras is the Lie algebra of C∞ vector fields on a C∞ manifold. Another is the Lie algebra of ‘Poisson brackets’, that is, of C∞ functions on a C∞ symplectic manifold, with the Poisson bracket as composition; some questions concerning this algebra are of considerable interest in the theory of quantization – see, for instance, [2] and [3].


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehdi Jamshidi ◽  
Farshid Saeedi ◽  
Hamid Darabi

PurposeThe purpose of this paper is to determine the structure of nilpotent (n+6)-dimensional n-Lie algebras of class 2 when n≥4.Design/methodology/approachBy dividing a nilpotent (n+6)-dimensional n-Lie algebra of class 2 by a central element, the authors arrive to a nilpotent (n+5) dimensional n-Lie algebra of class 2. Given that the authors have the structure of nilpotent (n+5)-dimensional n-Lie algebras of class 2, the authors have access to the structure of the desired algebras.FindingsIn this paper, for each n≥4, the authors have found 24 nilpotent (n+6) dimensional n-Lie algebras of class 2. Of these, 15 are non-split algebras and the nine remaining algebras are written as direct additions of n-Lie algebras of low-dimension and abelian n-Lie algebras.Originality/valueThis classification of n-Lie algebras provides a complete understanding of these algebras that are used in algebraic studies.


2003 ◽  
Vol 12 (05) ◽  
pp. 589-604
Author(s):  
Hideaki Nishihara

Weight systems are constructed with solvable Lie algebras and their infinite dimensional representations. With a Heisenberg Lie algebra and its polynomial representations, the derived weight system vanishes on Jacobi diagrams with positive loop-degree on a circle, and it is proved that the derived knot invariant is the inverse of the Alexander-Conway polynomial.


2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Michel Goze ◽  
Elisabeth Remm

AbstractThe classification of complex or real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example, the nilpotent Lie algebras are classified only up to dimension 7. Moreover, to recognize a given Lie algebra in the classification list is not so easy. In this work, we propose a different approach to this problem. We determine families for some fixed invariants and the classification follows by a deformation process or a contraction process. We focus on the case of 2- and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology for this type of algebras and the algebras which are rigid with respect to this cohomology. Other


Sign in / Sign up

Export Citation Format

Share Document