scholarly journals Series representation of continuous functions

1965 ◽  
Vol 23 (3) ◽  
pp. 203-214
Author(s):  
Murray Wachman
2020 ◽  
Vol 25 (6) ◽  
pp. 1079-1106
Author(s):  
Vitalii Makogin ◽  
Yuliya Mishura

In this paper, we find fractional Riemann–Liouville derivatives for the Takagi–Landsberg functions. Moreover, we introduce their generalizations called weighted Takagi–Landsberg functions, which have arbitrary bounded coefficients in the expansion under Schauder basis. The class of weighted Takagi–Landsberg functions of order H > 0 on [0; 1] coincides with the class of H-Hölder continuous functions on [0; 1]. Based on computed fractional integrals and derivatives of the Haar and Schauder functions, we get a new series representation of the fractional derivatives of a Hölder continuous function. This result allows us to get a new formula of a Riemann–Stieltjes integral. The application of such series representation is a new method of numerical solution of the Volterra and linear integral equations driven by a Hölder continuous function.


2010 ◽  
Vol 47 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Fadime Dirik ◽  
Oktay Duman ◽  
Kamil Demirci

In the present work, using the concept of A -statistical convergence for double real sequences, we obtain a statistical approximation theorem for sequences of positive linear operators defined on the space of all real valued B -continuous functions on a compact subset of the real line. Furthermore, we display an application which shows that our new result is stronger than its classical version.


2021 ◽  
Vol 7 (1) ◽  
pp. 88-99
Author(s):  
Zanyar A. Ameen

AbstractThe notions of almost somewhat near continuity of functions and near regularity of spaces are introduced. Some properties of almost somewhat nearly continuous functions and their connections are studied. At the end, it is shown that a one-to-one almost somewhat nearly continuous function f from a space X onto a space Y is somewhat nearly continuous if and only if the range of f is nearly regular.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3593-3597
Author(s):  
Ravindra Bisht

Combining the approaches of functionals associated with h-concave functions and fixed point techniques, we study the existence and uniqueness of a solution for a class of nonlinear integral equation: x(t) = g1(t)-g2(t) + ? ?t,0 V1(t,s)h1(s,x(s))ds + ? ?T,0 V2(t,s)h2(s,x(s))ds; where C([0,T];R) denotes the space of all continuous functions on [0,T] equipped with the uniform metric and t?[0,T], ?,? are real numbers, g1, g2 ? C([0, T],R) and V1(t,s), V2(t,s), h1(t,s), h2(t,s) are continuous real-valued functions in [0,T]xR.


1995 ◽  
Vol 21 (1) ◽  
pp. 203
Author(s):  
Banaszewski
Keyword(s):  

1982 ◽  
Vol 8 (2) ◽  
pp. 455
Author(s):  
Akemann ◽  
Bruckner

Sign in / Sign up

Export Citation Format

Share Document