scholarly journals On extended structures of a closed operator related to semigroup theory and the abstract Cauchy problem

1974 ◽  
Vol 80 (2) ◽  
pp. 350-355
Author(s):  
Kai-Tak Wong
2017 ◽  
Vol 2 (2) ◽  
pp. 143
Author(s):  
Susilo Hariyanto

<div style="text-align: justify;">In this article we will investigate how to solve nonhomogen degenerate Cauchy problem via theory of semigroup of linear operator. The problem is formulated in Hilbert space which can be written as direct sum of subset Ker M and Ran M*. By certain assumptions the problem can be reduced to nondegenerate Cauchy problem. And then by composition between invers of operator M and the nondegenerate problem we can transform it to canonic problem, which is easier to solve than the original problem. By taking assumption that the operator A is infinitesimal generator of semigroup, the canonic problem has a unique solution. This allow to define special operator which map the solution of canonic problem to original problem. ©2016 JNSMR UIN Walisongo. All rights reserved.</div>


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jennifer Bravo ◽  
Carlos Lizama

AbstractWe show that if A is a closed linear operator defined in a Banach space X and there exist $t_{0} \geq 0$ t 0 ≥ 0 and $M>0$ M > 0 such that $\{(im)^{\alpha }\}_{|m|> t_{0}} \subset \rho (A)$ { ( i m ) α } | m | > t 0 ⊂ ρ ( A ) , the resolvent set of A, and $$ \bigl\Vert (im)^{\alpha }\bigl(A+(im)^{\alpha }I \bigr)^{-1} \bigr\Vert \leq M \quad \text{ for all } \vert m \vert > t_{0}, m \in \mathbb{Z}, $$ ∥ ( i m ) α ( A + ( i m ) α I ) − 1 ∥ ≤ M  for all  | m | > t 0 , m ∈ Z , then, for each $\frac{1}{p}<\alpha \leq \frac{2}{p}$ 1 p < α ≤ 2 p and $1< p < 2$ 1 < p < 2 , the abstract Cauchy problem with periodic boundary conditions $$ \textstyle\begin{cases} _{GL}D^{\alpha }_{t} u(t) + Au(t) = f(t), & t \in (0,2\pi ); \\ u(0)=u(2\pi ), \end{cases} $$ { D t α G L u ( t ) + A u ( t ) = f ( t ) , t ∈ ( 0 , 2 π ) ; u ( 0 ) = u ( 2 π ) , where $_{GL}D^{\alpha }$ D α G L denotes the Grünwald–Letnikov derivative, admits a normal 2π-periodic solution for each $f\in L^{p}_{2\pi }(\mathbb{R}, X)$ f ∈ L 2 π p ( R , X ) that satisfies appropriate conditions. In particular, this happens if A is a sectorial operator with spectral angle $\phi _{A} \in (0, \alpha \pi /2)$ ϕ A ∈ ( 0 , α π / 2 ) and $\int _{0}^{2\pi } f(t)\,dt \in \operatorname{Ran}(A)$ ∫ 0 2 π f ( t ) d t ∈ Ran ( A ) .


2020 ◽  
Vol 23 (4) ◽  
pp. 1125-1140
Author(s):  
Andriy Lopushansky ◽  
Oleh Lopushansky ◽  
Anna Szpila

AbstractAn fractional abstract Cauchy problem generated by a sectorial operator is investigated. An inequality of coercivity type for its solution with respect to a complex interpolation scale generated by a sectorial operator with the same parameters is established. An application to differential parabolic initial-boundary value problems in bounded domains with a fractional time derivative is shown.


2015 ◽  
Vol 29 (1) ◽  
pp. 51-59
Author(s):  
Łukasz Dawidowski

AbstractThe abstract Cauchy problem on scales of Banach space was considered by many authors. The goal of this paper is to show that the choice of the space on scale is significant. We prove a theorem that the selection of the spaces in which the Cauchy problem ut − Δu = u|u|s with initial–boundary conditions is considered has an influence on the selection of index s. For the Cauchy problem connected with the heat equation we will study how the change of the base space influents the regularity of the solutions.


Sign in / Sign up

Export Citation Format

Share Document