scholarly journals Entire pluricomplex Green functions and Lelong numbers of projective currents

2005 ◽  
Vol 134 (7) ◽  
pp. 1927-1935 ◽  
Author(s):  
Dan Coman
2021 ◽  
Vol 126 (21) ◽  
Author(s):  
Heinrich-Gregor Zirnstein ◽  
Gil Refael ◽  
Bernd Rosenow

1976 ◽  
Vol 109 (3) ◽  
pp. 421-438 ◽  
Author(s):  
C.J. Hamer
Keyword(s):  

2020 ◽  
Vol 18 (1) ◽  
pp. 632-652 ◽  
Author(s):  
Muhammad Adeel ◽  
Khuram Ali Khan ◽  
Ðilda Pečarić ◽  
Josip Pečarić

Abstract In this study, Levinson-type inequalities are generalized by using new Green functions and Montgomery identity for the class of k-convex functions (k ≥ 3). Čebyšev-, Grüss- and Ostrowski-type new bounds are found for the functionals involving data points of two types. Moreover, a new functional is introduced based on {\mathfrak{f}} divergence and then some estimates for new functional are obtained. Some inequalities for Shannon entropies are obtained too.


Author(s):  
Duc-Viet Vu

AbstractLet X be a compact Kähler manifold. Let $$T_1, \ldots , T_m$$ T 1 , … , T m be closed positive currents of bi-degree (1, 1) on X and T an arbitrary closed positive current on X. We introduce the non-pluripolar product relative to T of $$T_1, \ldots , T_m$$ T 1 , … , T m . We recover the well-known non-pluripolar product of $$T_1, \ldots , T_m$$ T 1 , … , T m when T is the current of integration along X. Our main results are a monotonicity property of relative non-pluripolar products, a necessary condition for currents to be of relative full mass intersection in terms of Lelong numbers, and the convexity of weighted classes of currents of relative full mass intersection. The former two results are new even when T is the current of integration along X.


Author(s):  
Junyan Cao ◽  
Henri Guenancia ◽  
Mihai Păun

Abstract Given a Kähler fiber space p : X → Y {p:X\to Y} whose generic fiber is of general type, we prove that the fiberwise singular Kähler–Einstein metric induces a semipositively curved metric on the relative canonical bundle K X / Y {K_{X/Y}} of p. We also propose a conjectural generalization of this result for relative twisted Kähler–Einstein metrics. Then we show that our conjecture holds true if the Lelong numbers of the twisting current are zero. Finally, we explain the relevance of our conjecture for the study of fiberwise Song–Tian metrics (which represent the analogue of KE metrics for fiber spaces whose generic fiber has positive but not necessarily maximal Kodaira dimension).


Author(s):  
Van Hieu Nguyen ◽  
Bich Ha Nguyen ◽  
Ngoc Dung Dinh

Sign in / Sign up

Export Citation Format

Share Document