scholarly journals Different asymptotic spreading speeds induced by advection in a diffusion problem with free boundaries

2014 ◽  
Vol 143 (3) ◽  
pp. 1109-1117 ◽  
Author(s):  
Hong Gu ◽  
Zhigui Lin ◽  
Bendong Lou
2019 ◽  
Vol 31 (3) ◽  
pp. 423-449
Author(s):  
JINGJING CAI ◽  
LI XU

We study a free boundary problem of the form: ut = uxx + f(t, u) (g(t) < x < h(t)) with free boundary conditions h′(t) = −ux(t, h(t)) – α(t) and g′(t) = −ux(t, g(t)) + β(t), where β(t) and α(t) are positive T-periodic functions, f(t, u) is a Fisher–KPP type of nonlinearity and T-periodic in t. This problem can be used to describe the spreading of a biological or chemical species in time-periodic environment, where free boundaries represent the spreading fronts of the species. We study the asymptotic behaviour of bounded solutions. There are two T-periodic functions α0(t) and α*(t; β) with 0 < α0 < α* which play key roles in the dynamics. More precisely, (i) in case 0 < β< α0 and 0 < α < α*, we obtain a trichotomy result: (i-1) spreading, that is, h(t) – g(t) → +∞ and u(t, ⋅ + ct) → 1 with $c\in (-\overline{l},\overline{r})$, where $ \overline{l}:=\frac{1}{T}\int_{0}^{T}l(s)ds$, $\overline{r}:=\frac{1}{T}\int_{0}^{T}r(s)ds$, the T-periodic functions −l(t) and r(t) are the asymptotic spreading speeds of g(t) and h(t) respectively (furthermore, r(t) > 0 > −l(t) when 0 < β < α < α0; r(t) = 0 > −l(t) when 0 < β < α = α0; $0 \gt \overline{r} \gt -\overline{l}$ when 0 < β < α0 < α < α*); (i-2) vanishing, that is, $\lim\limits_{t \to \mathcal {T}}h(t) = \lim\limits_{t \to \mathcal {T}}g(t)$ and $\lim\limits_{t \to \mathcal {T}}\max\limits_{g(t)\leq x\leq h(t)} u(t,x)=0$, where $\mathcal {T}$ is some positive constant; (i-3) transition, that is, g(t) → −∞, h(t) → −∞, $0<\lim\limits_{t \to \infty}[h(t)-g(t)] \lt +\infty$ and u(t, ⋅) → V(t, ⋅), where V is a T-periodic solution with compact support. (ii) in case β ≥ α0 or α ≥ α*, vanishing happens for any solution.


2014 ◽  
Vol 30 (3) ◽  
pp. 035005 ◽  
Author(s):  
Michel Cristofol ◽  
Isma Kaddouri ◽  
Grégoire Nadin ◽  
Lionel Roques

Nonlinearity ◽  
2021 ◽  
Vol 34 (2) ◽  
pp. 669-704
Author(s):  
Arnaud Ducrot ◽  
Thomas Giletti ◽  
Jong-Shenq Guo ◽  
Masahiko Shimojo

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yihong Du ◽  
Mingxin Wang ◽  
Meng Zhao

<p style='text-indent:20px;'>We study a class of free boundary systems with nonlocal diffusion, which are natural extensions of the corresponding free boundary problems of reaction diffusion systems. As before the free boundary represents the spreading front of the species, but here the population dispersal is described by "nonlocal diffusion" instead of "local diffusion". We prove that such a nonlocal diffusion problem with free boundary has a unique global solution, and for models with Lotka-Volterra type competition or predator-prey growth terms, we show that a spreading-vanishing dichotomy holds, and obtain criteria for spreading and vanishing; moreover, for the weak competition case and for the weak predation case, we can determine the long-time asymptotic limit of the solution when spreading happens. Compared with the single species free boundary model with nonlocal diffusion considered recently in [<xref ref-type="bibr" rid="b7">7</xref>], and the two species cases with local diffusion extensively studied in the literature, the situation considered in this paper involves several new difficulties, which are overcome by the use of some new techniques.</p>


2020 ◽  
Vol 26 ◽  
pp. 78
Author(s):  
Thirupathi Gudi ◽  
Ramesh Ch. Sau

We study an energy space-based approach for the Dirichlet boundary optimal control problem governed by the Laplace equation with control constraints. The optimality system results in a simplified Signorini type problem for control which is coupled with boundary value problems for state and costate variables. We propose a finite element based numerical method using the linear Lagrange finite element spaces with discrete control constraints at the Lagrange nodes. The analysis is presented in a combination for both the gradient and the L2 cost functional. A priori error estimates of optimal order in the energy norm is derived up to the regularity of the solution for both the cases. Theoretical results are illustrated by some numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document