scholarly journals A reduction of proof complexity to computational complexity for $AC^0[p]$ Frege systems

2015 ◽  
Vol 143 (11) ◽  
pp. 4951-4965 ◽  
Author(s):  
Jan Krajíček
Author(s):  
Sarah Sigley ◽  
Olaf Beyersdorff

AbstractWe investigate the proof complexity of modal resolution systems developed by Nalon and Dixon (J Algorithms 62(3–4):117–134, 2007) and Nalon et al. (in: Automated reasoning with analytic Tableaux and related methods—24th international conference, (TABLEAUX’15), pp 185–200, 2015), which form the basis of modal theorem proving (Nalon et al., in: Proceedings of the twenty-sixth international joint conference on artificial intelligence (IJCAI’17), pp 4919–4923, 2017). We complement these calculi by a new tighter variant and show that proofs can be efficiently translated between all these variants, meaning that the calculi are equivalent from a proof complexity perspective. We then develop the first lower bound technique for modal resolution using Prover–Delayer games, which can be used to establish “genuine” modal lower bounds for size of dag-like modal resolution proofs. We illustrate the technique by devising a new modal pigeonhole principle, which we demonstrate to require exponential-size proofs in modal resolution. Finally, we compare modal resolution to the modal Frege systems of Hrubeš (Ann Pure Appl Log 157(2–3):194–205, 2009) and obtain a “genuinely” modal separation.


2017 ◽  
Vol 23 (4) ◽  
pp. 405-441 ◽  
Author(s):  
PAVEL PUDLÁK

AbstractMotivated by the problem of finding finite versions of classical incompleteness theorems, we present some conjectures that go beyondNP≠coNP. These conjectures formally connect computational complexity with the difficulty of proving some sentences, which means that high computational complexity of a problem associated with a sentence implies that the sentence is not provable in a weak theory, or requires a long proof. Another reason for putting forward these conjectures is that some results in proof complexity seem to be special cases of such general statements and we want to formalize and fully understand these statements. Roughly speaking, we are trying to connect syntactic complexity, by which we mean the complexity of sentences and strengths of the theories in which they are provable, with the semantic concept of complexity of the computational problems represented by these sentences.We have introduced the most fundamental conjectures in our earlier works [27, 33–35]. Our aim in this article is to present them in a more systematic way, along with several new conjectures, and prove new connections between them and some other statements studied before.


2009 ◽  
Vol 50 (2) ◽  
pp. 193-198 ◽  
Author(s):  
S. R. Aleksanyan ◽  
A. A. Chubaryan

2018 ◽  
Vol 28 (02) ◽  
pp. 217-256
Author(s):  
Fu Li ◽  
Iddo Tzameret

We use results from the theory of algebras with polynomial identities (PI-algebras) to study the witness complexity of matrix identities. A matrix identity of [Formula: see text] matrices over a field [Formula: see text]is a non-commutative polynomial (f(x1, …, xn)) over [Formula: see text], such that [Formula: see text] vanishes on every [Formula: see text] matrix assignment to its variables. For every field [Formula: see text]of characteristic 0, every [Formula: see text] and every finite basis of [Formula: see text] matrix identities over [Formula: see text], we show there exists a family of matrix identities [Formula: see text], such that each [Formula: see text] has [Formula: see text] variables and requires at least [Formula: see text] many generators to generate, where the generators are substitution instances of elements from the basis. The lower bound argument uses fundamental results from PI-algebras together with a generalization of the arguments in [P. Hrubeš, How much commutativity is needed to prove polynomial identities? Electronic colloquium on computational complexity, ECCC, Report No.: TR11-088, June 2011].We apply this result in algebraic proof complexity, focusing on proof systems for polynomial identities (PI proofs) which operate with algebraic circuits and whose axioms are the polynomial-ring axioms [P. Hrubeš and I. Tzameret, The proof complexity of polynomial identities, in Proc. 24th Annual IEEE Conf. Computational Complexity, CCC 2009, 15–18 July 2009, Paris, France (2009), pp. 41–51; Short proofs for the determinant identities, SIAM J. Comput. 44(2) (2015) 340–383], and their subsystems. We identify a decrease in strength hierarchy of subsystems of PI proofs, in which the [Formula: see text]th level is a sound and complete proof system for proving [Formula: see text] matrix identities (over a given field). For each level [Formula: see text] in the hierarchy, we establish an [Formula: see text] lower bound on the number of proof-steps needed to prove certain identities.Finally, we present several concrete open problems about non-commutative algebraic circuits and speed-ups in proof complexity, whose solution would establish stronger size lower bounds on PI proofs of matrix identities, and beyond.


Author(s):  
Sam Buss ◽  
Jakob Nordström

This chapter gives an overview of proof complexity and connections to SAT solving, focusing on proof systems such as resolution, Nullstellensatz, polynomial calculus, and cutting planes (corresponding to conflict-driven clause learning, algebraic approaches using linear algebra or Gröbner bases, and pseudo-Boolean solving, respectively). There is also a discussion of extended resolution (which is closely related to DRAT proof logging) and Frege and extended Frege systems more generally. An ample supply of references for further reading is provided, including for some topics omitted in this chapter.


2007 ◽  
Vol 13 (4) ◽  
pp. 417-481 ◽  
Author(s):  
Nathan Segerlind

AbstractPropositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes.


1996 ◽  
Vol 6 (3) ◽  
pp. 256-298 ◽  
Author(s):  
S. Buss ◽  
R. Impagliazzo ◽  
J. Krajíček ◽  
P. Pudlák ◽  
A. A. Razborov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document