scholarly journals The existence of positive solutions for the one-dimensional $p$-Laplacian

1997 ◽  
Vol 125 (8) ◽  
pp. 2275-2283 ◽  
Author(s):  
Junyu Wang
2008 ◽  
Vol 49 (4) ◽  
pp. 551-560 ◽  
Author(s):  
BO SUN ◽  
XIANGKUI ZHAO ◽  
WEIGAO GE

AbstractIn this paper, we study the existence of positive solutions for the one-dimensional p-Laplacian differential equation, subject to the multipoint boundary condition by applying a monotone iterative method.


2019 ◽  
Vol 39 (5) ◽  
pp. 675-689
Author(s):  
D. D. Hai ◽  
X. Wang

We prove the existence of positive solutions for the \(p\)-Laplacian problem \[\begin{cases}-(r(t)\phi (u^{\prime }))^{\prime }=\lambda g(t)f(u),& t\in (0,1),\\au(0)-H_{1}(u^{\prime }(0))=0,\\cu(1)+H_{2}(u^{\prime}(1))=0,\end{cases}\] where \(\phi (s)=|s|^{p-2}s\), \(p\gt 1\), \(H_{i}:\mathbb{R}\rightarrow\mathbb{R}\) can be nonlinear, \(i=1,2\), \(f:(0,\infty )\rightarrow \mathbb{R}\) is \(p\)-superlinear or \(p\)-sublinear at \(\infty\) and is allowed be singular \((\pm\infty)\) at \(0\), and \(\lambda\) is a positive parameter.


2013 ◽  
Vol 2013 (1) ◽  
Author(s):  
Ruyun Ma ◽  
Yanqiong Lu ◽  
Ahmed Omer Mohammed Abubaker

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Ruyun Ma ◽  
Lingfang Jiang

We consider the existence of positive solutions of one-dimensional prescribed mean curvature equation−(u′/1+u′2)′=λf(u),0<t<1,u(t)>0,t∈(0,1),u(0)=u(1)=0whereλ>0is a parameter, andf:[0,∞)→[0,∞)is continuous. Further, whenfsatisfiesmax{up,uq}≤f(u)≤up+uq,0<p≤q<+∞, we obtain the exact number of positive solutions. The main results are based upon quadrature method.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Ruyun Ma ◽  
Chunjie Xie ◽  
Abubaker Ahmed

We use the quadrature method to show the existence and multiplicity of positive solutions of the boundary value problems involving one-dimensional p-Laplacian u′t|p−2u′t′+λfut=0, t∈0,1, u(0)=u(1)=0, where p∈(1,2], λ∈(0,∞) is a parameter, f∈C1([0,r),[0,∞)) for some constant r>0, f(s)>0 in (0,r), and lims→r-(r-s)p-1f(s)=+∞.


Sign in / Sign up

Export Citation Format

Share Document