scholarly journals Conjugate points, triangular matrices, and Riccati equations

1974 ◽  
Vol 199 ◽  
pp. 181-181
Author(s):  
Zeev Nehari
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Saiful R. Mondal ◽  
Kottakkaran Sooppy Nisar ◽  
Thabet Abdeljawad

Abstract The article considers several polynomials induced by admissible lower triangular matrices and studies their subordination properties. The concept generalizes the notion of stable functions in the unit disk. Several illustrative examples, including those related to the Cesàro mean, are discussed, and connections are made with earlier works.


2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Sameh Shenawy

Abstract Let $\mathcal {W}^{n}$ W n be the set of smooth complete simply connected n-dimensional manifolds without conjugate points. The Euclidean space and the hyperbolic space are examples of these manifolds. Let $W\in \mathcal {W}^{n}$ W ∈ W n and let A and B be two convex subsets of W. This note aims to investigate separation and slab horosphere separation of A and B. For example,sufficient conditions on A and B to be separated by a slab of horospheres are obtained. Existence and uniqueness of foot points and farthest points of a convex set A in $W\in \mathcal {W}$ W ∈ W are considered.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Vijay Balasubramanian ◽  
Matthew DeCross ◽  
Arjun Kar ◽  
Yue Li ◽  
Onkar Parrikar

Abstract We use the SYK family of models with N Majorana fermions to study the complexity of time evolution, formulated as the shortest geodesic length on the unitary group manifold between the identity and the time evolution operator, in free, integrable, and chaotic systems. Initially, the shortest geodesic follows the time evolution trajectory, and hence complexity grows linearly in time. We study how this linear growth is eventually truncated by the appearance and accumulation of conjugate points, which signal the presence of shorter geodesics intersecting the time evolution trajectory. By explicitly locating such “shortcuts” through analytical and numerical methods, we demonstrate that: (a) in the free theory, time evolution encounters conjugate points at a polynomial time; consequently complexity growth truncates at O($$ \sqrt{N} $$ N ), and we find an explicit operator which “fast-forwards” the free N-fermion time evolution with this complexity, (b) in a class of interacting integrable theories, the complexity is upper bounded by O(poly(N)), and (c) in chaotic theories, we argue that conjugate points do not occur until exponential times O(eN), after which it becomes possible to find infinitesimally nearby geodesics which approximate the time evolution operator. Finally, we explore the notion of eigenstate complexity in free, integrable, and chaotic models.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 613-618
Author(s):  
Şamil Akçağıl

AbstractSolving nonlinear evolution equations is an important issue in the mathematical and physical sciences. Therefore, traditional methods, such as the method of characteristics, are used to solve nonlinear partial differential equations. A general method for determining analytical solutions for partial differential equations has not been found among traditional methods. Due to the development of symbolic computational techniques many alternative methods, such as hyperbolic tangent function methods, have been introduced in the last 50 years. Although all of them were introduced as a new method, some of them are similar to each other. In this study, we examine the following four important methods intensively used in the literature: the tanh–coth method, the modified Kudryashov method, the F-expansion method and the generalized Riccati equation mapping method. The similarities of these methods attracted our attention, and we give a link between the methods and a system of projective Riccati equations. It is possible to derive new solution methods for nonlinear evolution equations by using this connection.


Sign in / Sign up

Export Citation Format

Share Document