scholarly journals Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications

2012 ◽  
Vol 365 (4) ◽  
pp. 1933-1956 ◽  
Author(s):  
Kuo-Chih Hung ◽  
Shin-Hwa Wang
2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Ruyun Ma ◽  
Yanqiong Lu

we show the existence and multiplicity of positive solutions of the nonlinear discrete fourth-order boundary value problemΔ4ut-2=λhtfut,t∈T2,u1=uT+1=Δ2u0=Δ2uT=0, whereλ>0,h:T2→(0,∞)is continuous, andf:R→[0,∞)is continuous,T>4,T2=2,3,…,T. The main tool is the Dancer's global bifurcation theorem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hongliang Gao ◽  
Jing Xu

AbstractIn this paper, we consider the bifurcation curves and exact multiplicity of positive solutions of the one-dimensional Minkowski-curvature equation $$ \textstyle\begin{cases} - (\frac{u'}{\sqrt{1-u^{\prime \,2}}} )'=\lambda f(u), &x\in (-L,L), \\ u(-L)=0=u(L), \end{cases} $$ { − ( u ′ 1 − u ′ 2 ) ′ = λ f ( u ) , x ∈ ( − L , L ) , u ( − L ) = 0 = u ( L ) , where λ and L are positive parameters, $f\in C[0,\infty ) \cap C^{2}(0,\infty )$ f ∈ C [ 0 , ∞ ) ∩ C 2 ( 0 , ∞ ) , and $f(u)>0$ f ( u ) > 0 for $0< u< L$ 0 < u < L . We give the precise description of the structure of the bifurcation curves and obtain the exact number of positive solutions of the above problem when f satisfies $f''(u)>0$ f ″ ( u ) > 0 and $uf'(u)\geq f(u)+\frac{1}{2}u^{2}f''(u)$ u f ′ ( u ) ≥ f ( u ) + 1 2 u 2 f ″ ( u ) for $0< u< L$ 0 < u < L . In two different cases, we obtain that the above problem has zero, exactly one, or exactly two positive solutions according to different ranges of λ. The arguments are based upon a detailed analysis of the time map.


2003 ◽  
Vol 3 (2) ◽  
Author(s):  
Philip Korman ◽  
Yi Li ◽  
Tiancheng Ouyang

AbstractWe revisit the question of exact multiplicity of positive solutions for a class of Dirichlet problems for cubic-like nonlinearities, which we studied in [6]. Instead of computing the direction of bifurcation as we did in [6], we use an indirect approach, and study the evolution of turning points. We give conditions under which the critical (turning) points continue on smooth curves, which allows us to reduce the problem to the easier case of f (0) = 0. We show that the smallest root of f (u) does not have to be restricted.


Sign in / Sign up

Export Citation Format

Share Document