scholarly journals Bifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equation

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hongliang Gao ◽  
Jing Xu

AbstractIn this paper, we consider the bifurcation curves and exact multiplicity of positive solutions of the one-dimensional Minkowski-curvature equation $$ \textstyle\begin{cases} - (\frac{u'}{\sqrt{1-u^{\prime \,2}}} )'=\lambda f(u), &x\in (-L,L), \\ u(-L)=0=u(L), \end{cases} $$ { − ( u ′ 1 − u ′ 2 ) ′ = λ f ( u ) , x ∈ ( − L , L ) , u ( − L ) = 0 = u ( L ) , where λ and L are positive parameters, $f\in C[0,\infty ) \cap C^{2}(0,\infty )$ f ∈ C [ 0 , ∞ ) ∩ C 2 ( 0 , ∞ ) , and $f(u)>0$ f ( u ) > 0 for $0< u< L$ 0 < u < L . We give the precise description of the structure of the bifurcation curves and obtain the exact number of positive solutions of the above problem when f satisfies $f''(u)>0$ f ″ ( u ) > 0 and $uf'(u)\geq f(u)+\frac{1}{2}u^{2}f''(u)$ u f ′ ( u ) ≥ f ( u ) + 1 2 u 2 f ″ ( u ) for $0< u< L$ 0 < u < L . In two different cases, we obtain that the above problem has zero, exactly one, or exactly two positive solutions according to different ranges of λ. The arguments are based upon a detailed analysis of the time map.

2012 ◽  
Vol 12 (3) ◽  
Author(s):  
Isabel Coelho ◽  
Chiara Corsato ◽  
Franco Obersnel ◽  
Pierpaolo Omari

AbstractWe discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation.Depending on the behaviour of f = f (t, s) near s = 0, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of f is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.


Author(s):  
Inbo Sim ◽  
Satoshi Tanaka

Employing the Kolodner–Coffman method, we show the exact multiplicity of positive solutions for the one-dimensional p-Laplacian that is subject to a Dirichlet boundary condition with a positive convex nonlinearity and an indefinite weight function.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Ruyun Ma ◽  
Chunjie Xie ◽  
Abubaker Ahmed

We use the quadrature method to show the existence and multiplicity of positive solutions of the boundary value problems involving one-dimensional p-Laplacian u′t|p−2u′t′+λfut=0, t∈0,1, u(0)=u(1)=0, where p∈(1,2], λ∈(0,∞) is a parameter, f∈C1([0,r),[0,∞)) for some constant r>0, f(s)>0 in (0,r), and lims→r-(r-s)p-1f(s)=+∞.


2003 ◽  
Vol 3 (2) ◽  
Author(s):  
Philip Korman ◽  
Yi Li ◽  
Tiancheng Ouyang

AbstractWe revisit the question of exact multiplicity of positive solutions for a class of Dirichlet problems for cubic-like nonlinearities, which we studied in [6]. Instead of computing the direction of bifurcation as we did in [6], we use an indirect approach, and study the evolution of turning points. We give conditions under which the critical (turning) points continue on smooth curves, which allows us to reduce the problem to the easier case of f (0) = 0. We show that the smallest root of f (u) does not have to be restricted.


2019 ◽  
Vol 21 (03) ◽  
pp. 1850003 ◽  
Author(s):  
Xuemei Zhang ◽  
Meiqiang Feng

In this paper, bifurcation diagrams and exact multiplicity of positive solution are obtained for the one-dimensional prescribed mean curvature equation in Minkowski space in the form of [Formula: see text] where [Formula: see text] is a bifurcation parameter, [Formula: see text], the radius of the one-dimensional ball [Formula: see text], is an evolution parameter. Moreover, we make a comparison between the bifurcation diagram of one-dimensional prescribed mean curvature equation in Euclid space and Minkowski space. Our methods are based on a detailed analysis of time maps.


2019 ◽  
Vol 19 (3) ◽  
pp. 437-473 ◽  
Author(s):  
Julian López-Gómez ◽  
Pierpaolo Omari

Abstract This paper investigates the topological structure of the set of the positive solutions of the one-dimensional quasilinear indefinite Neumann problem \begin{dcases}-\Bigg{(}\frac{u^{\prime}}{\sqrt{1+{u^{\prime}}^{2}}}\Bigg{)}^{% \prime}=\lambda a(x)f(u)\quad\text{in }(0,1),\\ u^{\prime}(0)=0,\quad u^{\prime}(1)=0,\end{dcases} where {\lambda\in\mathbb{R}} is a parameter, {a\in L^{\infty}(0,1)} changes sign, and {f\in C^{1}(\mathbb{R})} is positive in {(0,+\infty)} . The attention is focused on the case {f(0)=0} and {f^{\prime}(0)=1} , where we can prove, likely for the first time in the literature, a bifurcation result for this problem in the space of bounded variation functions. Namely, the existence of global connected components of the set of the positive solutions, emanating from the line of the trivial solutions at the two principal eigenvalues of the linearized problem around 0, is established. The solutions in these components are regular, as long as they are small, while they may develop jump singularities at the nodes of the weight function a, as they become larger, thus showing the possible coexistence along the same component of regular and singular solutions.


2007 ◽  
Vol 09 (05) ◽  
pp. 701-730 ◽  
Author(s):  
PATRICK HABETS ◽  
PIERPAOLO OMARI

We discuss existence, non-existence and multiplicity of positive solutions of the Dirichlet problem for the one-dimensional prescribed curvature equation [Formula: see text] in connection with the changes of concavity of the function f. The proofs are based on an upper and lower solution method, we specifically develop for this problem, combined with a careful analysis of the time-map associated with some related autonomous equations.


Sign in / Sign up

Export Citation Format

Share Document