scholarly journals A spectral approach for quenched limit theorems for random hyperbolic dynamical systems

2019 ◽  
Vol 373 (1) ◽  
pp. 629-664 ◽  
Author(s):  
D. Dragičević ◽  
G. Froyland ◽  
C. González-Tokman ◽  
S. Vaienti
2008 ◽  
Vol 28 (2) ◽  
pp. 587-612 ◽  
Author(s):  
LUC REY-BELLET ◽  
LAI-SANG YOUNG

AbstractWe prove large deviation principles for ergodic averages of dynamical systems admitting Markov tower extensions with exponential return times. Our main technical result from which a number of limit theorems are derived is the analyticity of logarithmic moment generating functions. Among the classes of dynamical systems to which our results apply are piecewise hyperbolic diffeomorphisms, dispersing billiards including Lorentz gases, and strange attractors of rank one including Hénon-type attractors.


2018 ◽  
Vol 360 (3) ◽  
pp. 1121-1187 ◽  
Author(s):  
D. Dragičević ◽  
G. Froyland ◽  
C. González-Tokman ◽  
S. Vaienti

1998 ◽  
Vol 18 (2) ◽  
pp. 471-486 ◽  
Author(s):  
T. B. WARD

We show that for almost every ergodic $S$-integer dynamical system the radius of convergence of the dynamical zeta function is no larger than $\exp(-\frac{1}{2}h_{\rm top})<1$. In the arithmetic case almost every zeta function is irrational.We conjecture that for almost every ergodic $S$-integer dynamical system the radius of convergence of the zeta function is exactly $\exp(-h_{\rm top})<1$ and the zeta function is irrational.In an important geometric case (the $S$-integer systems corresponding to isometric extensions of the full $p$-shift or, more generally, linear algebraic cellular automata on the full $p$-shift) we show that the conjecture holds with the possible exception of at most two primes $p$.Finally, we explicitly describe the structure of $S$-integer dynamical systems as isometric extensions of (quasi-)hyperbolic dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document