scholarly journals A free boundary problem arising from branching Brownian motion with selection

Author(s):  
Julien Berestycki ◽  
Éric Brunet ◽  
James Nolen ◽  
Sarah Penington
2017 ◽  
Vol 49 (2) ◽  
pp. 430-445 ◽  
Author(s):  
Natalie Attard

Abstract We present solutions to nonzero-sum games of optimal stopping for Brownian motion in [0, 1] absorbed at either 0 or 1. The approach used is based on the double partial superharmonic characterisation of the value functions derived in Attard (2015). In this setting the characterisation of the value functions has a transparent geometrical interpretation of 'pulling two ropes' above 'two obstacles' which must, however, be constrained to pass through certain regions. This is an extension of the analogous result derived by Peskir (2009), (2012) (semiharmonic characterisation) for the value function in zero-sum games of optimal stopping. To derive the value functions we transform the game into a free-boundary problem. The latter is then solved by making use of the double smooth fit principle which was also observed in Attard (2015). Martingale arguments based on the Itô–Tanaka formula will then be used to verify that the solution to the free-boundary problem coincides with the value functions of the game and this will establish the Nash equilibrium.


MAT Serie A ◽  
2001 ◽  
Vol 5 ◽  
pp. 37-41
Author(s):  
Claudia Lederman ◽  
Juan Luis Vázquez ◽  
Noemí Wolanski

2008 ◽  
Vol 05 (04) ◽  
pp. 785-806
Author(s):  
KAZUAKI NAKANE ◽  
TOMOKO SHINOHARA

A free boundary problem that arises from the physical phenomenon of "peeling a thin tape from a domain" is treated. In this phenomenon, the movement of the tape is governed by a hyperbolic equation and is affected by the peeling front. We are interested in the behavior of the peeling front, especially, the phenomenon of self-excitation vibration. In the present paper, a mathematical model of this phenomenon is proposed. The cause of this vibration is discussed in terms of adhesion.


Sign in / Sign up

Export Citation Format

Share Document