scholarly journals Nonlethal sec71-1 and sec72-1 mutations eliminate proteins associated with the Sec63p-BiP complex from S. cerevisiae.

1994 ◽  
Vol 5 (9) ◽  
pp. 933-942 ◽  
Author(s):  
H Fang ◽  
N Green

The sec71-1 and sec72-1 mutations were identified by a genetic assay that monitored membrane protein integration into the endoplasmic reticulum (ER) membrane of the yeast Saccharomyces cerevisiae. The mutations inhibited integration of various chimeric membrane proteins and translocation of a subset of water soluble proteins. In this paper we show that SEC71 encodes the 31.5-kDa transmembrane glycoprotein (p31.5) and SEC72 encodes the 23-kDa protein (p23) of the Sec63p-BiP complex. SEC71 is therefore identical to SEC66 (HSS1), which was previously shown to encode p31.5. DNA sequence analyses reveal that sec71-1 cells contain a nonsense mutation that removes approximately two-thirds of the cytoplasmic C-terminal domain of p31.5. The sec72-1 mutation shifts the reading frame of the gene encoding p23. Unexpectedly, the sec71-1 mutant lacks p31.5 and p23. Neither mutation is lethal, although sec71-1 cells exhibit a growth defect at 37 degrees C. These results show that p31.5 and p23 are important for the trafficking of a subset of proteins to the ER membrane.

Genetics ◽  
1993 ◽  
Vol 135 (4) ◽  
pp. 955-962 ◽  
Author(s):  
R A Reijo ◽  
D S Cho ◽  
T C Huffaker

Abstract rts1-1 was identified as an extragenic suppressor of tub2-104, a cold-sensitive allele of the sole gene encoding beta-tubulin in the yeast, Saccharomyces cerevisiae. In addition, rts1-1 cells are heat sensitive and resistant to the microtubule-destabilizing drug, benomyl. The rts1-1 mutation is a deletion of approximately 5 kb of genomic DNA on chromosome X that includes one open reading frame and three tRNA genes. Dissection of this region shows that heat sensitivity is due to deletion of the open reading frame (HIT1). Suppression and benomyl resistance are caused by deletion of the gene encoding a tRNA(Arg)AGG (HSX1). Northern analysis of rts1-1 cells indicates that HSX1 is the only gene encoding this tRNA. Deletion of HSX1 does not suppress the tub2-104 mutation by misreading at the AGG codons in TUB2. It also does not suppress by interfering with the protein arginylation that targets certain proteins for degradation. These results leave open the prospect that this tRNA(Arg)AGG plays a novel role in the cell.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1707-1715 ◽  
Author(s):  
J L Patton-Vogt ◽  
S A Henry

Abstract Phosphatidylinositol catabolism in Saccharomyces cerevisiae cells cultured in media containing inositol results in the release of glycerophosphoinositol (GroPIns) into the medium. As the extracellular concentration of inositol decreases with growth, the released GroPIns is transported back into the cell. Exploiting the ability of the inositol auxotroph, ino1, to use exogenous GroPIns as an inositol source, we have isolated mutants (Git−) defective in the uptake and metabolism of GroPIns. One mutant was found to be affected in the gene encoding the transcription factor, SPT7. Mutants of the positive regulatory gene INO2, but not of its partner, INO4, also have the Git− phenotype. Another mutant was complemented by a single open reading frame (ORF) termed GIT1 (glycerophosphoinositol). This ORF consists of 1556 bp predicted to encode a polypeptide of 518 amino acids and 57.3 kD. The predicted Git1p has similarity to a variety of S. cerevisiae transporters, including a phosphate transporter (Pho84p), and both inositol transporters (Itr1p and Itr2p). Furthermore, Git1p contains a sugar transport motif and 12 potential membrane-spanning domains. Transport assays performed on a git1 mutant together with the above evidence indicate that the GIT1 gene encodes a permease involved in the uptake of GroPIns.


Genetics ◽  
1985 ◽  
Vol 111 (2) ◽  
pp. 233-241
Author(s):  
Joachim F Ernst ◽  
D Michael Hampsey ◽  
Fred Sherman

ABSTRACT ICR-170-induced mutations in the CYC1 gene of the yeast Saccharomyces cerevisiae were investigated by genetic and DNA sequence analyses. Genetic analysis of 33 cyc1 mutations induced by ICR-170 and sequence analysis of eight representatives demonstrated that over one-third were frameshift mutations that occurred at one site corresponding to amino acid positions 29-30, whereas the remaining mutations were distributed more-or-less randomly, and a few of these were not frameshift mutations. The sequence results indicate that ICR-170 primarily induces G·C additions at sites containing monotonous runs of three G·C base pairs. However, some (see PDF) sites within the CYC1 gene were not mutated by ICR-170. Thus, ICR-170 is a relatively specific mutagen that preferentially acts on certain sites with monotonous runs of G·C base pairs.


1991 ◽  
Vol 11 (5) ◽  
pp. 2593-2608 ◽  
Author(s):  
D X Tishkoff ◽  
A W Johnson ◽  
R D Kolodner

Vegetatively grown Saccharomyces cerevisiae cells contain an activity that promotes a number of homologous pairing reactions. A major portion of this activity is due to strand exchange protein 1 (Sep1), which was originally purified as a 132,000-Mr species (R. Kolodner, D. H. Evans, and P. T. Morrison, Proc. Natl. Acad. Sci. USA 84:5560-5564, 1987). The gene encoding Sep1 was cloned, and analysis of the cloned gene revealed a 4,587-bp open reading frame capable of encoding a 175,000-Mr protein. The protein encoded by this open reading frame was overproduced and purified and had a relative molecular weight of approximately 160,000. The 160,000-Mr protein was at least as active in promoting homologous pairing as the original 132,000-Mr species, which has been shown to be a fragment of the intact 160,000-Mr Sep1 protein. The SEP1 gene mapped to chromosome VII within 20 kbp of RAD54. Three Tn10LUK insertion mutations in the SEP1 gene were characterized. sep1 mutants grew more slowly than wild-type cells, showed a two- to fivefold decrease in the rate of spontaneous mitotic recombination between his4 heteroalleles, and were delayed in their ability to return to growth after UV or gamma irradiation. Sporulation of sep1/sep1 diploids was defective, as indicated by both a 10- to 40-fold reduction in spore formation and reduced spore viability of approximately 50%. The majority of sep1/sep1 diploid cells arrested in meiosis after commitment to recombination but prior to the meiosis I cell division. Return-to-growth experiments showed that sep1/sep1 his4X/his4B diploids exhibited a five- to sixfold greater meiotic induction of His+ recombinants than did isogenic SEP1/SEP1 strains. sep1/sep1 mutants also showed an increased frequency of exchange between HIS4, LEU2, and MAT and a lack of positive interference between these markers compared with wild-type controls. The interaction between sep1, rad50, and spo13 mutations suggested that SEP1 acts in meiosis in a pathway that is parallel to the RAD50 pathway.


1992 ◽  
Vol 12 (9) ◽  
pp. 3843-3856 ◽  
Author(s):  
J P O'Connor ◽  
C L Peebles

We have identified an essential Saccharomyces cerevisiae gene, PTA1, that affects pre-tRNA processing. PTA1 was initially defined by a UV-induced mutation, pta1-1, that causes the accumulation of all 10 end-trimmed, intron-containing pre-tRNAs and temperature-sensitive but osmotic-remedial growth. pta1-1 does not appear to be an allele of any other known gene affecting pre-tRNA processing. Extracts prepared from pta1-1 strains had normal pre-tRNA splicing endonuclease activity. pta1-1 was suppressed by the ochre suppressor tRNA gene SUP11, indicating that the pta1-1 mutation creates a termination codon within a protein reading frame. The PTA1 gene was isolated from a genomic library by complementation of the pta1-1 growth defect. Episome-borne PTA1 directs recombination to the pta1-1 locus. PTA1 has been mapped to the left arm of chromosome I near CDC24; the gene was sequenced and could encode a protein of 785 amino acids with a molecular weight of 88,417. No other protein sequences similar to that of the predicted PTA1 gene product have been identified within the EMBL or GenBank data base. Disruption of PTA1 near the carboxy terminus of the putative open reading frame was lethal. Possible functions of the PTA1 gene product are discussed.


1991 ◽  
Vol 11 (5) ◽  
pp. 2583-2592 ◽  
Author(s):  
C C Dykstra ◽  
K Kitada ◽  
A B Clark ◽  
R K Hamatake ◽  
A Sugino

The gene encoding the 180-kDa DNA strand transfer protein beta from the yeast Saccharomyces cerevisiae was identified and sequenced. This gene, DST2 (DNA strand transferase 2), was located on chromosome VII. dst2 gene disruption mutants exhibited temperature-sensitive sporulation and a 50% longer generation time during vegetative growth than did the wild type. Spontaneous mitotic recombination in the mutants was reduced severalfold for both intrachromosomal recombination and intragenic gene conversion. The mutants also had reduced levels of the intragenic recombination that is induced during meiosis. Meiotic recombinants were, however, somewhat unstable in the mutants, with a decrease in recombinants and survival upon prolonged incubation in sporulation media. spo13 or spo13 rad50 mutations did not relieve the sporulation defect of dst2 mutations. A dst1 dst2 double mutant has the same phenotype as a dst2 single mutant. All phenotypes associated with the dst2 mutations could be complemented by a plasmid containing DST2.


1990 ◽  
Vol 10 (11) ◽  
pp. 5903-5913 ◽  
Author(s):  
A L Kruckeberg ◽  
L F Bisson

The HXT2 gene of the yeast Saccharomyces cerevisiae was identified on the basis of its ability to complement the defect in glucose transport of a snf3 mutant when present on the multicopy plasmid pSC2. Analysis of the DNA sequence of HXT2 revealed an open reading frame of 541 codons, capable of encoding a protein of Mr 59,840. The predicted protein displayed high sequence and structural homology to a large family of procaryotic and eucaryotic sugar transporters. These proteins have 12 highly hydrophobic regions that could form transmembrane domains; the spacing of these putative transmembrane domains is also highly conserved. Several amino acid motifs characteristic of this sugar transporter family are also present in the HXT2 protein. An hxt2 null mutant strain lacked a significant component of high-affinity glucose transport when under derepressing (low-glucose) conditions. However, the hxt2 null mutation did not incur a major growth defect on glucose-containing media. Genetic and biochemical analyses suggest that wild-type levels of high-affinity glucose transport require the products of both the HXT2 and SNF3 genes; these genes are not linked. Low-stringency Southern blot analysis revealed a number of other sequences that cross-hybridize with HXT2, suggesting that S. cerevisiae possesses a large family of sugar transporter genes.


1990 ◽  
Vol 10 (12) ◽  
pp. 6500-6511 ◽  
Author(s):  
F E Williams ◽  
R J Trumbly

The TUP1 and CYC8 (= SSN6) genes of Saccharomyces cerevisiae play a major role in glucose repression. Mutations in either TUP1 or CYC8 eliminate or reduce glucose repression of many repressible genes and induce other phenotypes, including flocculence, failure to sporulate, and sterility of MAT alpha cells. The TUP1 gene was isolated in a screen for genes that regulate mating type (V.L. MacKay, Methods Enzymol. 101:325-343, 1983). We found that a 3.5-kb restriction fragment was sufficient for complete complementation of tup1-100. The gene was further localized by insertional mutagenesis and RNA mapping. Sequence analysis of 2.9 kb of DNA including TUP1 revealed only one long open reading frame which predicts a protein of molecular weight 78,221. The predicted protein is rich in serine, threonine, and glutamine. In the carboxyl region there are six repeats of a pattern of about 43 amino acids. This same pattern of conserved residues is seen in the beta subunit of transducin and the yeast CDC4 gene product. Insertion and deletion mutants are viable, with the same range of phenotypes as for point mutants. Deletions of the 3' end of the coding region produced the same mutant phenotypes as did total deletions, suggesting that the C terminus is critical for TUP1 function. Strains with deletions in both the CYC8 and TUP1 genes are viable, with phenotypes similar to those of strains with a single deletion. A deletion mutation of TUP1 was able to suppress the snf1 mutation block on expression of the SUC2 gene encoding invertase.


1991 ◽  
Vol 11 (11) ◽  
pp. 5693-5700 ◽  
Author(s):  
N Nakazawa ◽  
S Harashima ◽  
Y Oshima

We have isolated a class of mutants, aar2, showing the alpha mating type due to a defect in a1-alpha 2 repression but with alpha 2 repression activity from a nonmater strain of Saccharomyces cerevisiae expressing both a and alpha mating-type information in duplicate. Cells of the aar2 mutant and the aar2 disruptant also show a growth defect. A DNA fragment complementing the aar2 mutation contains an open reading frame consisting of 355 amino acid codons. Northern hybridization showed that cells of the aar2 mutant and disruptant contained alpha 1 and alpha 2 transcripts of the MAT alpha gene (or HML alpha in sir3 cells), but their a1 transcript of MATa (or HMRa in sir3 cells) migrated more slowly than that of the wild-type cells on gel electrophoresis and gave a diffused band. Primer extension analysis showed that the aar2 mutant and disruptant have a defect in splicing two short introns of the a1 pre-mRNA but not in splicing pre-mRNA of ACT1. The alpha mating type, but not the slow-growing phenotype, of the aar2 mutant was suppressed by introduction of an intronless MATa1 DNA. Thus, the AAR2 gene is involved in splicing pre-mRNA of the a1 cistron and other genes that are important for cell growth. The AAR2 locus was mapped on chromosome II beside the SSA3 locus, with a 276-bp space, but was not allelic to either PRP5 or PRP6, which are both located on chromosome II and function in splicing pre-mRNA of ACT1.


1991 ◽  
Vol 11 (7) ◽  
pp. 3804-3813 ◽  
Author(s):  
D A Lewis ◽  
L F Bisson

Two novel genes affecting hexose transport in the yeast Saccharomyces cerevisiae have been identified. The gene HXT1 (hexose transport), isolated from plasmid pSC7, was sequenced and found to encode a hydrophobic protein which is highly homologous to the large family of sugar transporter proteins from eucaryotes and procaryotes. Multicopy expression of the HXT1 gene restored high-affinity glucose transport to the snf3 mutant, which is deficient in a significant proportion of high-affinity glucose transport. HXT1 was unable to complement the snf3 growth defect in low copy number. The HXT1 protein was found to contain 12 putative membrane-spanning domains with a central hydrophilic domain and hydrophilic N- and C-terminal domains. The HXT1 protein is 69% identical to GAL2 and 66% identical to HXT2, and all three proteins were found to have a putative leucine zipper motif at a consensus location in membrane-spanning domain 2. Disruption of the HXT1 gene resulted in loss of a portion of high-affinity glucose and mannose transport, and wild-type levels of transport required both the HXT1 and SNF3 genes. Unexpectedly, expression of beta-galactosidase activity by using a fusion of the lacZ gene to the HXT1 promoter in a multicopy plasmid was maximal during lag and early exponential phases of growth, decreasing approximately 100-fold upon further entry into exponential growth. Deletion analysis of pSC7 revealed the presence of another gene (called ORF2) capable of suppressing the snf3 null mutant phenotype by restoring high-affinity glucose transport and increased low-affinity transport.


Sign in / Sign up

Export Citation Format

Share Document