scholarly journals The Organization of the Core Proteins of the Yeast Spindle Pole Body

2005 ◽  
Vol 16 (7) ◽  
pp. 3341-3352 ◽  
Author(s):  
Eric G.D. Muller ◽  
Brian E. Snydsman ◽  
Isabella Novik ◽  
Dale W. Hailey ◽  
Daniel R. Gestaut ◽  
...  

The spindle pole body (SPB) is the microtubule organizing center of Saccharomyces cerevisiae. Its core includes the proteins Spc42, Spc110 (kendrin/pericentrin ortholog), calmodulin (Cmd1), Spc29, and Cnm67. Each was tagged with CFP and YFP and their proximity to each other was determined by fluorescence resonance energy transfer (FRET). FRET was measured by a new metric that accurately reflected the relative extent of energy transfer. The FRET values established the topology of the core proteins within the architecture of SPB. The N-termini of Spc42 and Spc29, and the C-termini of all the core proteins face the gap between the IL2 layer and the central plaque. Spc110 traverses the central plaque and Cnm67 spans the IL2 layer. Spc42 is a central component of the central plaque where its N-terminus is closely associated with the C-termini of Spc29, Cmd1, and Spc110. When the donor-acceptor pairs were ordered into five broad categories of increasing FRET, the ranking of the pairs specified a unique geometry for the positions of the core proteins, as shown by a mathematical proof. The geometry was integrated with prior cryoelectron tomography to create a model of the interwoven network of proteins within the central plaque. One prediction of the model, the dimerization of the calmodulin-binding domains of Spc110, was confirmed by in vitro analysis.

2012 ◽  
Vol 23 (12) ◽  
pp. 2319-2326 ◽  
Author(s):  
Zane J. Bergman ◽  
Xue Xia ◽  
I. Alexandra Amaro ◽  
Tim C. Huffaker

The organization of microtubules is determined in most cells by a microtubule-organizing center, which nucleates microtubule assembly and anchors their minus ends. In Saccharomyces cerevisiae cells lacking She1, cytoplasmic microtubules detach from the spindle pole body at high rates. Increased rates of detachment depend on dynein activity, supporting previous evidence that She1 inhibits dynein. Detachment rates are higher in G1 than in metaphase cells, and we show that this is primarily due to differences in the strengths of microtubule attachment to the spindle pole body during these stages of the cell cycle. The minus ends of detached microtubules are stabilized by the presence of γ-tubulin and Spc72, a protein that tethers the γ-tubulin complex to the spindle pole body. A Spc72–Kar1 fusion protein suppresses detachment in G1 cells, indicating that the interaction between these two proteins is critical to microtubule anchoring. Overexpression of She1 inhibits the loading of dynactin components, but not dynein, onto microtubule plus ends. In addition, She1 binds directly to microtubules in vitro, so it may compete with dynactin for access to microtubules. Overall, these results indicate that inhibition of dynein activity by She1 is important to prevent excessive detachment of cytoplasmic microtubules, particularly in G1 cells.


2006 ◽  
Vol 174 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Sue L. Jaspersen ◽  
Adriana E. Martin ◽  
Galina Glazko ◽  
Thomas H. Giddings ◽  
Garry Morgan ◽  
...  

The spindle pole body (SPB) is the sole site of microtubule nucleation in Saccharomyces cerevisiae; yet, details of its assembly are poorly understood. Integral membrane proteins including Mps2 anchor the soluble core SPB in the nuclear envelope. Adjacent to the core SPB is a membrane-associated SPB substructure known as the half-bridge, where SPB duplication and microtubule nucleation during G1 occurs. We found that the half-bridge component Mps3 is the budding yeast member of the SUN protein family (Sad1-UNC-84 homology) and provide evidence that it interacts with the Mps2 C terminus to tether the half-bridge to the core SPB. Mutants in the Mps3 SUN domain or Mps2 C terminus have SPB duplication and karyogamy defects that are consistent with the aberrant half-bridge structures we observe cytologically. The interaction between the Mps3 SUN domain and Mps2 C terminus is the first biochemical link known to connect the half-bridge with the core SPB. Association with Mps3 also defines a novel function for Mps2 during SPB duplication.


1997 ◽  
Vol 139 (5) ◽  
pp. 1271-1280 ◽  
Author(s):  
Peijing Jeremy Wang ◽  
Tim C. Huffaker

Previously we isolated tub2-423, a cold-sensitive allele of the Saccharomyces cerevisiae gene encoding β-tubulin that confers a defect in mitotic spindle function. In an attempt to identify additional proteins that are important for spindle function, we screened for suppressors of the cold sensitivity of tub2-423 and obtained two alleles of a novel gene, STU2. STU2 is an essential gene and encodes a protein whose sequence is similar to proteins identified in a variety of organisms. Stu2p localizes primarily to the spindle pole body (SPB) and to a lesser extent along spindle microtubules. Localization to the SPB is not dependent on the presence of microtubules, indicating that Stu2p is an integral component of the SPB. Stu2p also binds microtubules in vitro. We have localized the microtubule-binding domain of Stu2p to a highly basic 100-amino acid region. This region contains two imperfect repeats; both repeats appear to contribute to microtubule binding to similar extents. These results suggest that Stu2p may play a role in the attachment, organization, and/or dynamics of microtubule ends at the SPB.


2000 ◽  
Vol 11 (12) ◽  
pp. 4173-4187 ◽  
Author(s):  
Saeko Takada ◽  
Takehiko Shibata ◽  
Yasushi Hiraoka ◽  
Hirohisa Masuda

Microtubule nucleation on the centrosome and the fungal equivalent, the spindle pole body (SPB), is activated at the onset of mitosis. We previously reported that mitotic extracts prepared fromXenopus unfertilized eggs convert the interphase SPB of fission yeast into a competent state for microtubule nucleation. In this study, we have purified an 85-kDa SPB activator from the extracts and identified it as the ribonucleotide reductase large subunit R1. We further confirmed that recombinant mouse R1 protein was also effective for SPB activation. On the other hand, another essential subunit of ribonucleotide reductase, R2 protein, was not required for SPB activation. SPB activation by R1 protein was suppressed in the presence of anti-R1 antibodies or a partial oligopeptide of R1; the oligopeptide also inhibited aster formation on Xenopussperm centrosomes. In accordance, R1 was detected in animal centrosomes by immunofluorescence and immunoblotting with anti-R1 antibodies. In addition, recombinant mouse R1 protein bound to γ- and α/β-tubulin in vitro. These results suggest that R1 is a bifunctional protein that acts on both ribonucleotide reduction and centrosome/SPB activation.


2005 ◽  
Vol 16 (1) ◽  
pp. 141-152 ◽  
Author(s):  
Tennessee J. Yoder ◽  
Mark A. McElwain ◽  
Susan E. Francis ◽  
Joy Bagley ◽  
Eric G.D. Muller ◽  
...  

The spindle pole body (SPB) is the microtubule organizing center in Saccharomyces cerevisiae. An essential task of the SPB is to ensure assembly of the bipolar spindle, which requires a proper balancing of forces on the microtubules and chromosomes. The SPB component Spc110p connects the ends of the spindle microtubules to the core of the SPB. We previously reported the isolation of a mutant allele spc110-226 that causes broken spindles and SPB disintegration 30 min after spindle formation. By live cell imaging of mutant cells with green fluorescent protein (GFP)-Tub1p or Spc97p-GFP, we show that spc110-226 mutant cells have early defects in spindle assembly. Short spindles form but do not advance to the 1.5-μm stage and frequently collapse. Kinetochores are not arranged properly in the mutant cells. In 70% of the cells, no stable biorientation occurs and all kinetochores are associated with only one SPB. Examination of the SPB remnants by electron microscopy tomography and fluorescence microscopy revealed that the Spc110-226p/calmodulin complex is stripped off of the central plaque of the SPB and coalesces to from a nucleating structure in the nucleoplasm. The central plaque components Spc42p and Spc29p remain behind in the nuclear envelope. The delamination is likely due to a perturbed interaction between Spc42p and Spc110-226p as detected by fluorescence resonance energy transfer analysis. We suggest that the force exerted on the SPB by biorientation of the chromosomes pulls the Spc110-226p out of the SPB; removal of force exerted by coherence of the sister chromatids reduced fragmentation fourfold. Removal of the forces exerted by the cytoplasmic microtubules had no effect on fragmentation. Our results provide insights into the relative contributions of the kinetochore and cytoplasmic microtubules to the forces involved in formation of a bipolar spindle.


2010 ◽  
Vol 30 (8) ◽  
pp. 2057-2074 ◽  
Author(s):  
Masayuki Onishi ◽  
Takako Koga ◽  
Aiko Hirata ◽  
Taro Nakamura ◽  
Haruhiko Asakawa ◽  
...  

ABSTRACT During yeast sporulation, a forespore membrane (FSM) initiates at each spindle-pole body and extends to form the spore envelope. We used Schizosaccharomyces pombe to investigate the role of septins during this process. During the prior conjugation of haploid cells, the four vegetatively expressed septins (Spn1, Spn2, Spn3, and Spn4) coassemble at the fusion site and are necessary for its normal morphogenesis. Sporulation involves a different set of four septins (Spn2, Spn5, Spn6, and the atypical Spn7) that does not include the core subunits of the vegetative septin complex. The four sporulation septins form a complex in vitro and colocalize interdependently to a ring-shaped structure along each FSM, and septin mutations result in disoriented FSM extension. The septins and the leading-edge proteins appear to function in parallel to orient FSM extension. Spn2 and Spn7 bind to phosphatidylinositol 4-phosphate [PtdIns(4)P] in vitro, and PtdIns(4)P is enriched in the FSMs, suggesting that septins bind to the FSMs via this lipid. Cells expressing a mutant Spn2 protein unable to bind PtdIns(4)P still form extended septin structures, but these structures fail to associate with the FSMs, which are frequently disoriented. Thus, septins appear to form a scaffold that helps to guide the oriented extension of the FSM.


2011 ◽  
Vol 195 (3) ◽  
pp. 467-484 ◽  
Author(s):  
Tiina Tamm ◽  
Agnes Grallert ◽  
Emily P.S. Grossman ◽  
Isabel Alvarez-Tabares ◽  
Frances E. Stevens ◽  
...  

The fission yeast interphase spindle pole body (SPB) is a bipartite structure in which a bulky cytoplasmic domain is separated from a nuclear component by the nuclear envelope. During mitosis, the SPB is incorporated into a fenestra that forms within the envelope during mitotic commitment. Closure of this fenestra during anaphase B/mitotic exit returns the cytoplasmic component to the cytoplasmic face of an intact interphase nuclear envelope. Here we show that Brr6 is transiently recruited to SPBs at both SPB insertion and extrusion. Brr6 is required for both SPB insertion and nuclear envelope integrity during anaphase B/mitotic exit. Genetic interactions with apq12 and defective sterol assimilation suggest that Brr6 may alter envelope composition at SPBs to promote SPB insertion and extrusion. The restriction of the Brr6 domain to eukaryotes that use a polar fenestra in an otherwise closed mitosis suggests a conserved role in fenestration to enable a single microtubule organizing center to nucleate both cytoplasmic and nuclear microtubules on opposing sides of the nuclear envelope.


2002 ◽  
Vol 156 (3) ◽  
pp. 453-465 ◽  
Author(s):  
Andrea R. Castillo ◽  
Janet B. Meehl ◽  
Garry Morgan ◽  
Amy Schutz-Geschwender ◽  
Mark Winey

Saccharomyces cerevisiae MPS1 encodes an essential protein kinase that has roles in spindle pole body (SPB) duplication and the spindle checkpoint. Previously characterized MPS1 mutants fail in both functions, leading to aberrant DNA segregation with lethal consequences. Here, we report the identification of a unique conditional allele, mps1–8, that is defective in SPB duplication but not the spindle checkpoint. The mutations in mps1-8 are in the noncatalytic region of MPS1, and analysis of the mutant protein indicates that Mps1-8p has wild-type kinase activity in vitro. A screen for dosage suppressors of the mps1-8 conditional growth phenotype identified the gene encoding the integral SPB component SPC42. Additional analysis revealed that mps1-8 exhibits synthetic growth defects when combined with certain mutant alleles of SPC42. An epitope-tagged version of Mps1p (Mps1p-myc) localizes to SPBs and kinetochores by immunofluorescence microscopy and immuno-EM analysis. This is consistent with the physical interaction we detect between Mps1p and Spc42p by coimmunoprecipitation. Spc42p is a substrate for Mps1p phosphorylation in vitro, and Spc42p phosphorylation is dependent on Mps1p in vivo. Finally, Spc42p assembly is abnormal in a mps1-1 mutant strain. We conclude that Mps1p regulates assembly of the integral SPB component Spc42p during SPB duplication.


Sign in / Sign up

Export Citation Format

Share Document