scholarly journals Conditional Expression of Toxoplasma gondii Apical Membrane Antigen-1 (TgAMA1) Demonstrates That TgAMA1 Plays a Critical Role in Host Cell Invasion

2005 ◽  
Vol 16 (9) ◽  
pp. 4341-4349 ◽  
Author(s):  
Jeffrey Mital ◽  
Markus Meissner ◽  
Dominique Soldati ◽  
Gary E. Ward

Toxoplasma gondii is an obligate intracellular parasite and an important human pathogen. Relatively little is known about the proteins that orchestrate host cell invasion by T. gondii or related apicomplexan parasites (including Plasmodium spp., which cause malaria), due to the difficulty of studying essential genes in these organisms. We have used a recently developed regulatable promoter to create a conditional knockout of T. gondii apical membrane antigen-1 (TgAMA1). TgAMA1 is a transmembrane protein that localizes to the parasite's micronemes, secretory organelles that discharge during invasion. AMA1 proteins are conserved among apicomplexan parasites and are of intense interest as malaria vaccine candidates. We show here that T. gondii tachyzoites depleted of TgAMA1 are severely compromised in their ability to invade host cells, providing direct genetic evidence that AMA1 functions during invasion. The TgAMA1 deficiency has no effect on microneme secretion or initial attachment of the parasite to the host cell, but it does inhibit secretion of the rhoptries, organelles whose discharge is coupled to active host cell penetration. The data suggest a model in which attachment of the parasite to the host cell occurs in two distinct stages, the second of which requires TgAMA1 and is involved in regulating rhoptry secretion.

2011 ◽  
Vol 10 (6) ◽  
pp. 591-602 ◽  
Author(s):  
Donatella Giovannini ◽  
Stephan Späth ◽  
Céline Lacroix ◽  
Audrey Perazzi ◽  
Daniel Bargieri ◽  
...  

2019 ◽  
Author(s):  
Cong Li ◽  
Qiping Zhao ◽  
Shunhai Zhu ◽  
Qingjie Wang ◽  
Haixia Wang ◽  
...  

Abstract Apical membrane antigen 1 (AMA1), which is released from micronemes and is conserved across all apicomplexans, plays a central role in the host cell invasion. In this study, we characterized one putative Et AMA1-interacting protein, E. tenella Eimeria -specific protein ( Et Esp). The interaction between Et AMA1 and Et Esp was confirmed with bimolecular fluorescence complementation (BiFC) in vivo and by glutathione S-transferase (GST) fusion protein pull-down (GST pull-down) in vitro . We showed that Et Esp is differentially expressed during distinct phases of the parasite life cycle by using qPCR and western blotting. Immunofluorescence analysis showed that the Et Esp protein is mainly distributed on the parasite surface, and that the expression of this protein increases during the development of the parasite in the host cells. Using staurosporine, we showed that Et Esp is a micronemal protein secreted by sporozoites. In inhibition tests, a polyclonal anti-r Et Esp antibody attenuated the capacity of E. tenella to invade host cells in vitro . These data have implications for the use of Et AMA1 or Et AMA1-interacting proteins as targets in intervention strategies against avian coccidiosis.


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Daniel Y. Bargieri ◽  
Nicole Andenmatten ◽  
Vanessa Lagal ◽  
Sabine Thiberge ◽  
Jamie A. Whitelaw ◽  
...  

mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Shruthi Krishnamurthy ◽  
Bin Deng ◽  
Roxana del Rio ◽  
Kerry R. Buchholz ◽  
Moritz Treeck ◽  
...  

ABSTRACT Apical membrane antigen 1 (AMA1) is a receptor protein on the surface of Toxoplasma gondii that plays a critical role in host cell invasion. The ligand to which T . gondii AMA1 (TgAMA1) binds, TgRON2, is secreted into the host cell membrane by the parasite during the early stages of invasion. The TgAMA1-TgRON2 complex forms the core of the “moving junction,” a ring-shaped zone of tight contact between the parasite and host cell membranes, through which the parasite pushes itself during invasion. Paradoxically, the parasite also expresses rhomboid proteases that constitutively cleave the TgAMA1 transmembrane domain. How can TgAMA1 function effectively in host cell binding if its extracellular domain is constantly shed from the parasite surface? We show here that when TgAMA1 binds the domain 3 (D3) peptide of TgRON2, its susceptibility to cleavage by rhomboid protease(s) is greatly reduced. This likely serves to maintain parasite-host cell binding at the moving junction, a hypothesis supported by data showing that parasites expressing a hypercleavable version of TgAMA1 invade less efficiently than wild-type parasites do. Treatment of parasites with the D3 peptide was also found to reduce phosphorylation of S527 on the cytoplasmic tail of TgAMA1, and parasites expressing a phosphomimetic S527D allele of TgAMA1 showed an invasion defect. Taken together, these data suggest that TgAMA1-TgRON2 interaction at the moving junction protects TgAMA1 molecules that are actively engaged in host cell penetration from rhomboid-mediated cleavage and generates an outside-in signal that leads to dephosphorylation of the TgAMA1 cytosolic tail. Both of these effects are required for maximally efficient host cell invasion. IMPORTANCE Nearly one-third of the world’s population is infected with the protozoan parasite Toxoplasma gondii , which causes life-threatening disease in neonates and immunocompromised individuals. T. gondii is a member of the phylum Apicomplexa, which includes many other parasites of veterinary and medical importance, such as those that cause coccidiosis, babesiosis, and malaria. Apicomplexan parasites grow within their hosts through repeated cycles of host cell invasion, parasite replication, and host cell lysis. Parasites that cannot invade host cells cannot survive or cause disease. AMA1 is a highly conserved protein on the surface of apicomplexan parasites that is known to be important for invasion, and the work presented here reveals new and unexpected insights into AMA1 function. A more complete understanding of the role of AMA1 in invasion may ultimately contribute to the development of new chemotherapeutics designed to disrupt AMA1 function and invasion-related signaling in this important group of human pathogens.


2000 ◽  
Vol 6 (S2) ◽  
pp. 648-649
Author(s):  
Heide Schatten ◽  
David Sibley ◽  
Hans Ris

The protozoan parasite Toxoplasma gondii represents a large group of Apicomplexan parasites with a highly unusual motility system that is crucial for cell locomotion and host cell invasion. Studying the motility system and interactions with host cells will increase our knowledge on how to prevent infection. Apicomplexan parasites can cause considerable health problems to animals including sheep, goats, pigs, and chicken. Eimeria is known as a pathogen of coccidiosis in chicken, and Cryptosporidium causes cryptospiridiosis in cattle and other farm animals. Toxoplasma gondii can cause infection that results in abortion, central nervous disorders and death of stressed and immunocompromised farm animals. Common to all Apicomplexan parasites is an unconventional motility system that is thought to be actively involved in host-cell invasion. However, the structural and biochemical characterization of Apicomplexan parasites has proven more difficult than previously thought because of genetic and behavioral differences of the parasites’ cytoskeletal proteins that differ from those in well studied mammalian systems.


mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Bang Shen ◽  
Jeffrey S. Buguliskis ◽  
Tobie D. Lee ◽  
L. David Sibley

ABSTRACT Host cell invasion by Toxoplasma gondii and other apicomplexan parasites requires transmembrane adhesins that mediate binding to receptors on the substrate and host cell to facilitate motility and invasion. Rhomboid proteases (ROMs) are thought to cleave adhesins within their transmembrane segments, thus allowing the parasite to disengage from receptors and completely enter the host cell. To examine the specific roles of individual ROMs during invasion, we generated single, double, and triple knockouts for the three ROMs expressed in T. gondii tachyzoites. Analysis of these mutants demonstrated that ROM4 is the primary protease involved in adhesin processing and host cell invasion, whereas ROM1 or ROM5 plays negligible roles in these processes. Deletion of ROM4 blocked the shedding of adhesins such as MIC2 (microneme protein 2), causing them to accumulate on the surface of extracellular parasites. Increased surface adhesins led to nonproductive attachment, altered gliding motility, impaired moving junction formation, and reduced invasion efficiency. Despite the importance of ROM4 for efficient invasion, mutants lacking all three ROMs were viable and MIC2 was still efficiently removed from the surface of invaded mutant parasites, implying the existence of ROM-independent mechanisms for adhesin removal during invasion. Collectively, these results suggest that although ROM processing of adhesins is not absolutely essential, it is important for efficient host cell invasion by T. gondii. IMPORTANCE Apicomplexan parasites such as Toxoplasma gondii express surface proteins that bind host cell receptors to aid invasion. Many of these adhesins are subject to cleavage by rhomboid proteases (ROMs) within their transmembrane segments during invasion. Previous studies have demonstrated the importance of adhesin cleavage for parasite invasion and proposed that the ROMs responsible for processing would be essential for parasite survival. In T. gondii, ROM5 was thought to be the critical ROM for adhesin shedding due to its robust protease activity in vitro and posterior localization on the parasite surface. Here, we knocked out all three ROMs in T. gondii tachyzoites and found that ROM4, but not ROM5, was key for adhesin cleavage. However, none of the ROMs individually or in combination was essential for cell entry, further emphasizing that essential pathways such as invasion typically rely on redundant pathways to ensure survival.


Sign in / Sign up

Export Citation Format

Share Document