host cell invasion
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 59)

H-INDEX

59
(FIVE YEARS 4)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Stephane Delbecq

Human babesiosis results from a combination of tick tropism for humans, susceptibility of a host to sustain Babesia development, and contact with infected ticks. Climate modifications and increasing diagnostics have led to an expanded number of Babesia species responsible for human babesiosis, although, to date, most cases have been attributed to B. microti and B. divergens. These two species have been extensively studied, and in this review, we mostly focus on the antigens involved in host–parasite interactions. We present features of the major antigens, so-called Bd37 in B. divergens and BmSA1/GPI12 in B. microti, and highlight the roles of these antigens in both host cell invasion and immune response. A comparison of these antigens with the major antigens found in some other Apicomplexa species emphasizes the importance of glycosylphosphatidylinositol-anchored proteins in host–parasite relationships. GPI-anchor cleavage, which is a property of such antigens, leads to soluble and membrane-bound forms of these proteins, with potentially differential recognition by the host immune system. This mechanism is discussed as the structural basis for the protein-embedded immune escape mechanism. In conclusion, the potential consequences of such a mechanism on the management of both human and animal babesiosis is examined.


2022 ◽  
Author(s):  
Li-av Segev-Zarko ◽  
Peter D. Dahlberg ◽  
Stella Y. Sun ◽  
Daniël M. Pelt ◽  
James A. Sethian ◽  
...  

Host cell invasion by intracellular, eukaryotic parasites, like the many important species within the phylum Apicomplexa, is a remarkable and active process involving the coordinated action of many apical organelles and other structures. To date, capturing how these various structures interact during invasion has been difficult to observe in detail. Here, we used cryogenic electron tomography to generate images of the apical complex of Toxoplasma gondii tachyzoites under conditions that mimic resting parasites and those primed to invade through addition of a calcium ionophore. Using AI-based image-processing we were able to annotate 48 tomograms to identify and extract densities of the relevant subcellular organelles and accurately analyze features in 3D. We describe an interaction between an anteriorly located apical vesicle and a rhoptry tip that occurs only in the ionophore-stimulated parasites and that is associated with dramatic changes in the vesicle's shape in what appears to be a stalled fusion event. We also present information to support the presumption that this vesicle originates from the well-described vesicles that parallel the intraconoidal microtubules and that the latter two structures are linked by a novel tether. Lastly, we show that a previously described rosette is found associated with more than just the anterior-most apical vesicle, indicating that multiple such vesicles are primed to enable rhoptry secretion.


2022 ◽  
Author(s):  
Priyanka Fernandes ◽  
Manon Loubens ◽  
Remi Le Borgne ◽  
Carine Marinach ◽  
Beatrice Ardin ◽  
...  

Plasmodium sporozoites that are transmitted by blood-feeding female Anopheles mosquitoes invade hepatocytes for an initial round of intracellular replication, leading to the release of merozoites that invade and multiply within red blood cells. Sporozoites and merozoites share a number of proteins that are expressed by both stages, including the Apical Membrane Antigen 1 (AMA1) and the Rhoptry Neck Proteins (RONs). Although AMA1 and RONs are essential for merozoite invasion of erythrocytes during asexual blood stage replication of the parasite, their function in sporozoites is still unclear. Here we show that AMA1 interacts with RONs in mature sporozoites. By using DiCre-mediated conditional gene deletion in P. berghei, we demonstrate that loss of AMA1, RON2 or RON4 in sporozoites impairs colonization of the mosquito salivary glands and invasion of mammalian hepatocytes, without affecting transcellular parasite migration. Our data establish that AMA1 and RONs facilitate host cell invasion across Plasmodium invasive stages, and suggest that sporozoites use the AMA1-RON complex to safely enter the mosquito salivary glands without causing cell damage, to ensure successful parasite transmission. These results open up the possibility of targeting the AMA1-RON complex for transmission-blocking antimalarial strategies.


Small ◽  
2021 ◽  
pp. 2105640
Author(s):  
Łukasz Suprewicz ◽  
Maxx Swoger ◽  
Sarthak Gupta ◽  
Ewelina Piktel ◽  
Fitzroy J. Byfield ◽  
...  

2021 ◽  
pp. 102518
Author(s):  
Nastasia Prybylski ◽  
Maurine Fayet ◽  
Aurore Dubuffet ◽  
Frédéric Delbac ◽  
Ayhan Kocer ◽  
...  

Author(s):  
Leonardo Loch ◽  
Thiago Souza Onofre ◽  
João Paulo Ferreira Rodrigues ◽  
Nobuko Yoshida

Metacyclic trypomastigote (MT) forms of Trypanosoma cruzi have been shown to release into medium gp82 and gp90, the stage-specific surface molecules that regulate host cell invasion, either in vesicles or in soluble form. Here, we found that during interaction of poorly invasive G strain with the host cell, gp82 and gp90 were released in vesicle-like forms, whereas no such release by highly invasive CL strain was observed. Shedding of vesicles of varying sizes by CL and G strains was visualized by scanning electron microscopy, and the protein profile of conditioned medium (CM) of the two strains was similar, but the content of gp82 and gp90 differed, with both molecules being detected in G strain as bands of high intensity in Western blotting, whereas in CL strain, they were barely detectable. Confocal images revealed a distinct distribution of gp82 and gp90 on MT surface of CL and G strains. In cell invasion assays, addition of G strain CM resulted in decreased CL strain internalization. Depletion of gp82 in G strain CM, by treatment with specific mAb-coupled magnetic beads, increased its inhibitory effect on CL strain invasion, in contrast to CM depleted in gp90. The effect of cholesterol-depleting drug methyl-β-cyclodextrin (MβCD) on gp82 and gp90 release by MTs was also examined. G strain MTs, untreated or treated with MβCD, were incubated in serum-containing medium or in nutrient-depleted PBS++, and the CM generated under these conditions was analyzed by Western blotting. In PBS++, gp82 and gp90 were released at lower levels by untreated MTs, as compared with MβCD-treated parasites. CM from untreated and MβCD-treated G strain, generated in PBS++, inhibited CL strain internalization. Treatment of CL strain MTs with MβCD resulted in increased gp82 and gp90 shedding and in decreased host cell invasion. The involvement of phospholipase C (PLC) on gp82 and gp90 shedding was also investigated. The CM from G strain MTs pretreated with specific PLC inhibitor contained lower levels of gp82 and gp90, as compared with untreated parasites. Our results contribute to shed light on the mechanism by which T. cruzi releases surface molecules implicated in host cell invasion.


mBio ◽  
2021 ◽  
Author(s):  
Silke Niemann ◽  
Minh-Thu Nguyen ◽  
Johannes A. Eble ◽  
Achmet I. Chasan ◽  
Maria Mrakovcic ◽  
...  

Traditionally, Staphylococcus aureus has been considered an extracellular pathogen. However, among other factors, the frequent failure of antimicrobial therapy and the ability of the pathogen to cause recurrent disease have established the concept of eukaryotic invasion of the pathogen, thereby evading the host’s immune system.


Author(s):  
Nubia Carolina Manchola Varón ◽  
Guilherme Rodrigo R. M. dos Santos ◽  
Walter Colli ◽  
Maria Julia M. Alves

Trypanosoma cruzi, the etiological agent of Chagas disease in humans, infects a wide variety of vertebrates. Trypomastigotes, the parasite infective forms, invade mammalian cells by a still poorly understood mechanism. Adhesion of tissue culture- derived trypomastigotes to the extracellular matrix (ECM) prior to cell invasion has been shown to be a relevant part of the process. Changes in phosphorylation, S-nitrosylation, and nitration levels of proteins, in the late phase of the interaction (2 h), leading to the reprogramming of both trypomastigotes metabolism and the DNA binding profile of modified histones, were described by our group. Here, the involvement of calcium signaling at a very early phase of parasite interaction with ECM is described. Increments in the intracellular calcium concentrations during trypomastigotes-ECM interaction depends on the Ca2+ uptake from the extracellular medium, since it is inhibited by EGTA or Nifedipine, an inhibitor of the L-type voltage gated Ca2+ channels and sphingosine-dependent plasma membrane Ca2+ channel, but not by Vanadate, an inhibitor of the plasma membrane Ca2+-ATPase. Furthermore, Nifedipine inhibits the invasion of host cells by tissue culture- derived trypomastigotes in a dose-dependent manner, reaching 95% inhibition at 100 µM Nifedipine. These data indicate the importance of both Ca2+ uptake from the medium and parasite-ECM interaction for host-cell invasion. Previous treatment of ECM with protease abolishes the Ca2+ uptake, further reinforcing the possibility that these events may be connected. The mitochondrion plays a relevant role in Ca2+ homeostasis in trypomastigotes during their interaction with ECM, as shown by the increment of the intracellular Ca2+ concentration in the presence of Antimycin A, in contrast to other calcium homeostasis disruptors, such as Cyclopiazonic acid for endoplasmic reticulum and Bafilomycin A for acidocalcisome. Total phosphatase activity in the parasite decreases in the presence of Nifedipine, EGTA, and Okadaic acid, implying a role of calcium in the phosphorylation level of proteins that are interacting with the ECM in tissue culture- derived trypomastigotes. In summary, we describe here the increment of Ca2+ at an early phase of the trypomastigotes interaction with ECM, implicating both nifedipine-sensitive Ca2+ channels in the influx of Ca2+ and the mitochondrion as the relevant organelle in Ca2+ homeostasis. The data unravel a complex sequence of events prior to host cell invasion itself.


2021 ◽  
Vol 9 (10) ◽  
pp. 2082
Author(s):  
Olga Tsaplina ◽  
Inessa Khmel ◽  
Yulia Zaitseva ◽  
Sofia Khaitlina

The bacteria Serratia proteamaculans 94 have a LuxI/LuxR type QS system consisting of AHL synthase SprI and the regulatory receptor SprR. We have previously shown that inactivation of the AHL synthase sprI gene resulted in an increase in the invasive activity of S. proteamaculans correlated with an increased bacterial adhesion. In the present work, the effects of inactivation of the S. proteamaculans receptor SprR are studied. Our results show that inactivation of the receptor sprR gene leads to an increase in bacterial invasion without any increase in their adhesion. On the other hand, inactivation of the sprR gene increases the activity of the extracellular protease serralysin. Inactivation of the QS system does not affect the activity of the pore-forming toxin ShlA and prevents the ShlA activation under conditions of a limited concentration of iron ions typical of the human body. While the wild type strain shows increased invasion in the iron-depleted medium, deletion of its QS system leads to a decrease in host cell invasion, which is nevertheless similar to the level of the wild type S. proteamaculans grown in the iron-rich medium. Thus, inactivation of either of the two component of the S. proteamaculans LuxI/LuxR-type QS system leads to an increase in the invasive activity of these bacteria through different mechanisms and prevents invasion under the iron-limited conditions.


Sign in / Sign up

Export Citation Format

Share Document