scholarly journals Na+/H+ Exchanger Regulatory Factor 1 Overexpression-dependent Increase of Cytoskeleton Organization Is Fundamental in the Rescue of F508del Cystic Fibrosis Transmembrane Conductance Regulator in Human Airway CFBE41o- Cells

2010 ◽  
Vol 21 (1) ◽  
pp. 73-86 ◽  
Author(s):  
Maria Favia ◽  
Lorenzo Guerra ◽  
Teresa Fanelli ◽  
Rosa Angela Cardone ◽  
Stefania Monterisi ◽  
...  

We have demonstrated that Na+/H+ exchanger regulatory factor 1 (NHERF1) overexpression in CFBE41o- cells induces a significant redistribution of F508del cystic fibrosis transmembrane conductance regulator (CFTR) from the cytoplasm to the apical membrane and rescues CFTR-dependent chloride secretion. Here, we observe that CFBE41o- monolayers displayed substantial disassembly of actin filaments and that overexpression of wild-type (wt) NHERF1 but not NHERF1-Δ Ezrin-Radixin-Moesin (ERM) increased F-actin assembly and organization. Furthermore, the dominant-negative band Four-point one, Ezrin, Radixin, Moesin homology (FERM) domain of ezrin reversed the wt NHERF1 overexpression-induced increase in both F-actin and CFTR-dependent chloride secretion. wt NHERF1 overexpression enhanced the interaction between NHERF1 and both CFTR and ezrin and between ezrin and actin and the overexpression of wt NHERF1, but not NHERF1-ΔERM, also increased the phosphorylation of ezrin in the apical region of the cell monolayers. Furthermore, wt NHERF1 increased RhoA activity and transfection of constitutively active RhoA in CFBE41o- cells was sufficient to redistribute phospho-ezrin to the membrane fraction and rescue both the F-actin content and the CFTR-dependent chloride efflux. Rho kinase (ROCK) inhibition, in contrast, reversed the wt NHERF1 overexpression-induced increase of membrane phospho-ezrin, F-actin content, and CFTR-dependent secretion. We conclude that NHERF1 overexpression in CFBE41o- rescues CFTR-dependent chloride secretion by forming the multiprotein complex RhoA-ROCK-ezrin-actin that, via actin cytoskeleton reorganization, tethers F508del CFTR to the cytoskeleton stabilizing it on the apical membrane.

1996 ◽  
Vol 270 (2) ◽  
pp. C474-C480 ◽  
Author(s):  
M. M. Reddy ◽  
P. M. Quinton

Cystic fibrosis transmembrane conductance regulator (CFTR) is a phosphorylation-activated Cl channel. However, very little is known about the endogenous mechanism(s) of deactivation of CFTR-Cl conductance (CFTR-GCl) in vivo. We studied the action of endogenous phosphatases in regulation of the adenosine 3',5'-cyclic monophosphate (cAMP)- and ATP-induced CFTR-GCl in the apical membrane of microperfused preparations of basolaterally permeabilized native sweat duct. Activation of CFTR-GCl was monitored by measuring the apical Cl diffusion potentials and GCl, which spontaneously deactivated on removal of cAMP. This spontaneous loss of CFTR-GCl activity could be prevented by a cocktail of phosphatase inhibitors (fluoride, vanadate, and okadaic acid). We studied the effects of each of these phosphatase antagonists on the rate of deactivation of CFTR-GCl after cAMP washout. In contrast to vanadate or fluoride, okadaic acid virtually prevented deactivation of CFTR-GCl after cAMP washout. We conclude that either or both protein phosphatases 1 and 2A are responsible for the dephosphorylation deactivation of CFTR-GCl in vivo.


1994 ◽  
Vol 266 (4) ◽  
pp. L405-L413 ◽  
Author(s):  
D. N. Sheppard ◽  
M. R. Carson ◽  
L. S. Ostedgaard ◽  
G. M. Denning ◽  
M. J. Welsh

Cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl- channel regulated by adenosine 3',5'-cyclic monophosphate (cAMP)-dependent phosphorylation and by intracellular nucleotides. The function of CFTR, like other recombinant ion channels, has generally been studied in single cells using voltage-clamp techniques. However, because CFTR is normally located in the apical membrane of epithelia we wanted to develop a system to study the function of recombinant CFTR expressed in an epithelium. We chose Fischer rat thyroid (FRT) epithelia for two reasons. First, when grown on permeable filter supports, FRT cells form polarized epithelia with a high transepithelial resistance. Second, they have no endogenous cAMP-regulated Cl- channels in their apical membrane. We expressed CFTR in FRT epithelia either transiently, using recombinant vaccinia virus, or stably, using a retrovirus. To measure apical membrane Cl- currents, we permeabilized the basolateral membrane to monovalent ions with nystatin and imposed a large transepithelial Cl- concentration gradient. cAMP agonists stimulated apical membrane Cl- currents in FRT epithelia infected with wild-type CFTR (vTF-CFTR) but not in FRT epithelia infected with either control virus (vTF7-3) or CFTR containing the delta F508 mutation (vTF-delta F508). These Cl- currents had properties similar to those of cAMP-activated Cl- currents in cells expressing endogenous or recombinant CFTR.(ABSTRACT TRUNCATED AT 250 WORDS)


2009 ◽  
Vol 20 (8) ◽  
pp. 2337-2350 ◽  
Author(s):  
Mark R. Silvis ◽  
Carol A. Bertrand ◽  
Nadia Ameen ◽  
Franca Golin-Bisello ◽  
Michael B. Butterworth ◽  
...  

The cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP/PKA-activated anion channel, undergoes efficient apical recycling in polarized epithelia. The regulatory mechanisms underlying CFTR recycling are understood poorly, yet this process is required for proper channel copy number at the apical membrane, and it is defective in the common CFTR mutant, ΔF508. Herein, we investigated the function of Rab11 isoforms in regulating CFTR trafficking in T84 cells, a colonic epithelial line that expresses CFTR endogenously. Western blotting of immunoisolated Rab11a or Rab11b vesicles revealed localization of endogenous CFTR within both compartments. CFTR function assays performed on T84 cells expressing the Rab11a or Rab11b GDP-locked S25N mutants demonstrated that only the Rab11b mutant inhibited 80% of the cAMP-activated halide efflux and that only the constitutively active Rab11b-Q70L increased the rate constant for stimulated halide efflux. Similarly, RNAi knockdown of Rab11b, but not Rab11a, reduced by 50% the CFTR-mediated anion conductance response. In polarized T84 monolayers, adenoviral expression of Rab11b-S25N resulted in a 70% inhibition of forskolin-stimulated transepithelial anion secretion and a 50% decrease in apical membrane CFTR as assessed by cell surface biotinylation. Biotin protection assays revealed a robust inhibition of CFTR recycling in polarized T84 cells expressing Rab11b-S25N, demonstrating the selective requirement for the Rab11b isoform. This is the first report detailing apical CFTR recycling in a native expression system and to demonstrate that Rab11b regulates apical recycling in polarized epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document