macromolecular assembly
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 24)

H-INDEX

30
(FIVE YEARS 3)

Retrovirology ◽  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
William M. McFadden ◽  
Alexa A. Snyder ◽  
Karen A. Kirby ◽  
Philip R. Tedbury ◽  
Monika Raj ◽  
...  

AbstractThe capsid core of HIV-1 is a large macromolecular assembly that surrounds the viral genome and is an essential component of the infectious virus. In addition to its multiple roles throughout the viral life cycle, the capsid interacts with multiple host factors. Owing to its indispensable nature, the HIV-1 capsid has been the target of numerous antiretrovirals, though most capsid-targeting molecules have not had clinical success until recently. Lenacapavir, a long-acting drug that targets the HIV-1 capsid, is currently undergoing phase 2/3 clinical trials, making it the most successful capsid inhibitor to-date. In this review, we detail the role of the HIV-1 capsid protein in the virus life cycle, categorize antiviral compounds based on their targeting of five sites within the HIV-1 capsid, and discuss their molecular interactions and mechanisms of action. The diverse range of inhibition mechanisms provides insight into possible new strategies for designing novel HIV-1 drugs and furthers our understanding of HIV-1 biology. Graphical Abstract


2021 ◽  
Vol 118 (39) ◽  
pp. e2104490118
Author(s):  
Jerome Carpenter ◽  
Yang Wang ◽  
Richa Gupta ◽  
Yuanli Li ◽  
Prashamsha Haridass ◽  
...  

Elevated levels of MUC5AC, one of the major gel-forming mucins in the lungs, are closely associated with chronic obstructive lung diseases such as chronic bronchitis and asthma. It is not known, however, how the structure and/or gel-making properties of MUC5AC contribute to innate lung defense in health and drive the formation of stagnant mucus in disease. To understand this, here we studied the biophysical properties and macromolecular assembly of MUC5AC compared to MUC5B. To study each native mucin, we used Calu3 monomucin cultures that produced MUC5AC or MUC5B. To understand the macromolecular assembly of MUC5AC through N-terminal oligomerization, we expressed a recombinant whole N-terminal domain (5ACNT). Scanning electron microscopy and atomic force microscopy imaging indicated that the two mucins formed distinct networks on epithelial and experimental surfaces; MUC5B formed linear, infrequently branched multimers, whereas MUC5AC formed tightly organized networks with a high degree of branching. Quartz crystal microbalance-dissipation monitoring experiments indicated that MUC5AC bound significantly more to hydrophobic surfaces and was stiffer and more viscoelastic as compared to MUC5B. Light scattering analysis determined that 5ACNT primarily forms disulfide-linked covalent dimers and higher-order oligomers (i.e., trimers and tetramers). Selective proteolytic digestion of the central glycosylated region of the full-length molecule confirmed that MUC5AC forms dimers and higher-order oligomers through its N terminus. Collectively, the distinct N-terminal organization of MUC5AC may explain the more adhesive and unique viscoelastic properties of branched, highly networked MUC5AC gels. These properties may generate insight into why/how MUC5AC forms a static, “tethered” mucus layer in chronic muco-obstructive lung diseases.


Author(s):  
Bárbara Claro ◽  
Antonio Peón ◽  
Eva González-Freire ◽  
Erik Goormaghtigh ◽  
Manuel Amorín ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4239
Author(s):  
Pezhman Mohammadi ◽  
Fabian Zemke ◽  
Wolfgang Wagermaier ◽  
Markus B. Linder

Macromolecular assembly into complex morphologies and architectural shapes is an area of fundamental research and technological innovation. In this work, we investigate the self-assembly process of recombinantly produced protein inspired by spider silk (spidroin). To elucidate the first steps of the assembly process, we examined highly concentrated and viscous pendant droplets of this protein in air. We show how the protein self-assembles and crystallizes at the water–air interface into a relatively thick and highly elastic skin. Using time-resolved in situ synchrotron X-ray scattering measurements during the drying process, we showed that the skin evolved to contain a high β-sheet amount over time. We also found that β-sheet formation strongly depended on protein concentration and relative humidity. These had a strong influence not only on the amount, but also on the ordering of these structures during the β-sheet formation process. We also showed how the skin around pendant droplets can serve as a reservoir for attaining liquid–liquid phase separation and coacervation from the dilute protein solution. Essentially, this study shows a new assembly route which could be optimized for the synthesis of new materials from a dilute protein solution and determine the properties of the final products.


2021 ◽  
Author(s):  
Pezhman Mohammadi ◽  
Fabian Zemke ◽  
Wolfgang Wagermaier ◽  
Markus B. Linder

Abstract Abstract: Macromolecular assembly into complex morphologies and architectural shapes is an area of fundamental research and technological innovation. In this work, we investigate the self-assembly process of recombinantly produced protein inspired by spider silk (spidroin). To elucidate the first steps of the assembly process we looked into highly concentrated and viscous pendant droplets of this protein in air. We show how the protein self-assembles and crystallizes at the water-air interface into a relatively thick and highly elastic skin. Using time-resolved in-situ synchrotron x-ray scattering measurements during the drying process, we showed that the skin evolved to contain a high β-sheet amount over time. We also found that β-sheet formation strongly depended on protein concentration and relative humidity. These had a strong influence not only on the amount but also on the ordering of these structures during the β-sheet formation process. We also showed how the skin around pendant droplets can serve as a reservoir for attaining liquid-liquid phase separation and coacervation from the dilute protein solution. Essentially, this study shows a new assembly route which could be optimized for the synthesis of new materials from a dilute protein solution and determine the properties of the final products.


2021 ◽  
Author(s):  
Pezhman Mohammadi ◽  
Fabian Zemke ◽  
Wolfgang Wagermaier ◽  
Markus B. Linder

Abstract Macromolecular assembly into complex morphologies and architectural shapes is an area of fundamental research and technological innovation. In this work, we investigate the self-assembly process of recombinantly produced protein inspired by spider silk (spidroin). To elucidate the first steps of the assembly process we looked into highly concentrated and viscous pendant droplets of this protein in air. We show how the protein self-assembles and crystallizes at the water-air interface into a relatively thick and highly elastic skin. Using time-resolved in-situ synchrotron x-ray scattering measurements during the drying process, we showed that the skin evolved to contain a high β-sheet amount over time. We also found that β-sheet formation strongly depended on protein concentration and relative humidity. These had a strong influence not only on the amount but also on the ordering of these structures during the β-sheet formation process. We also showed how the skin around pendant droplets can serve as a reservoir for attaining liquid-liquid phase separation and coacervation from the dilute protein solution. Essentially, this study shows a new assembly route which could be optimized for the synthesis of new materials from a dilute protein solution and determine the properties of the final products.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yong Zhou ◽  
Alemayehu A. Gorfe ◽  
John F. Hancock

RAS proteins are lipid-anchored small GTPases that switch between the GTP-bound active and GDP-bound inactive states. RAS isoforms, including HRAS, NRAS and splice variants KRAS4A and KRAS4B, are some of the most frequently mutated proteins in cancer. In particular, constitutively active mutants of KRAS comprise ∼80% of all RAS oncogenic mutations and are found in 98% of pancreatic, 45% of colorectal and 31% of lung tumors. Plasma membrane (PM) is the primary location of RAS signaling in biology and pathology. Thus, a better understanding of how RAS proteins localize to and distribute on the PM is critical to better comprehend RAS biology and to develop new strategies to treat RAS pathology. In this review, we discuss recent findings on how RAS proteins sort lipids as they undergo macromolecular assembly on the PM. We also discuss how RAS/lipid nanoclusters serve as signaling platforms for the efficient recruitment of effectors and signal transduction, and how perturbing the PM biophysical properties affect the spatial distribution of RAS isoforms and their functions.


2021 ◽  
Vol 118 (10) ◽  
pp. e2015648118
Author(s):  
Morgan R. Packer ◽  
Jillian A. Parker ◽  
Jean K. Chung ◽  
Zhenlu Li ◽  
Young Kwang Lee ◽  
...  

Ras dimerization is critical for Raf activation. Here we show that the Ras binding domain of Raf (Raf-RBD) induces robust Ras dimerization at low surface densities on supported lipid bilayers and, to a lesser extent, in solution as observed by size exclusion chromatography and confirmed by SAXS. Community network analysis based on molecular dynamics simulations shows robust allosteric connections linking the two Raf-RBD D113 residues located in the Galectin scaffold protein binding site of each Raf-RBD molecule and 85 Å apart on opposite ends of the dimer complex. Our results suggest that Raf-RBD binding and Ras dimerization are concerted events that lead to a high-affinity signaling complex at the membrane that we propose is an essential unit in the macromolecular assembly of higher order Ras/Raf/Galectin complexes important for signaling through the Ras/Raf/MEK/ERK pathway.


2020 ◽  
Vol 11 ◽  
Author(s):  
Rucha Arun Bapat ◽  
Jingtan Su ◽  
Janet Moradian-Oldak

Macromolecular assembly of extracellular enamel matrix proteins (EMPs) is intimately associated with the nucleation, growth, and maturation of highly organized hydroxyapatite crystals giving rise to healthy dental enamel. Although the colocalization of two of the most abundant EMPs amelogenin (Amel) and ameloblastin (Ambn) in molar enamel has been established, the evidence toward their interaction is scarce. We used co-immunoprecipitation (co-IP) to show evidence of direct molecular interactions between recombinant and native Amel and Ambn. Ambn fragments containing Y/F-x-x-Y/L/F-x-Y/F self-assembly motif were isolated from the co-IP column and characterized by mass spectroscopy. We used recombinant Ambn (rAmbn) mutants with deletion of exons 5 and 6 as well as Ambn derived synthetic peptides to demonstrate that Ambn binds to Amel via its previously identified Y/F-x-x-Y/L/F-x-Y/F self-assembly motif at the N-terminus of its exon 5 encoded region. Using an N-terminal specific anti-Ambn antibody, we showed that Ambn N-terminal fragments colocalized with Amel from secretory to maturation stages of enamel formation in a single section of developing mouse incisor, and closely followed mineral patterns in enamel rod interrod architecture. We conclude that Ambn self-assembly motif is involved in its interaction with Amel in solution and that colocalization between the two proteins persists from secretory to maturation stages of amelogenesis. Our in vitro and in situ data support the notion that Amel and Ambn may form heteromolecular assemblies that may perform important physiological roles during enamel formation.


2020 ◽  
Vol 48 (6) ◽  
pp. 2603-2614
Author(s):  
Nike Heinß ◽  
Mikhail Sushkin ◽  
Miao Yu ◽  
Edward A. Lemke

Nucleoporins (Nups) represent a range of proteins most known for composing the macromolecular assembly of the nuclear pore complex (NPC). Among them, the family of intrinsically disordered proteins (IDPs) phenylalanine-glycine (FG) rich Nups, form the permeability barrier and coordinate the high-speed nucleocytoplasmic transport in a selective way. Those FG-Nups have been demonstrated to participate in various biological processes besides nucleocytoplasmic transport. The high number of accessible hydrophobic motifs of FG-Nups potentially gives rise to this multifunctionality, enabling them to form unique microenvironments. In this review, we discuss the multifunctionality of disordered and F-rich Nups and the diversity of their localizations, emphasizing the important roles of those Nups in various regulatory and metabolic processes.


Sign in / Sign up

Export Citation Format

Share Document