scholarly journals RhoG Promotes Neural Progenitor Cell Proliferation in Mouse Cerebral Cortex

2009 ◽  
Vol 20 (23) ◽  
pp. 4941-4950 ◽  
Author(s):  
Satoshi Fujimoto ◽  
Manabu Negishi ◽  
Hironori Katoh

In early cortical development, neural progenitor cells (NPCs) expand their population in the ventricular zone (VZ), and produce neurons. Although a series of studies have revealed the process of neurogenesis, the molecular mechanisms regulating NPC proliferation are still largely unknown. Here we found that RhoG, a member of Rho family GTPases, was expressed in the VZ at early stages of cortical development. Expression of constitutively active RhoG promoted NPC proliferation and incorporation of bromodeoxyuridine (BrdU) in vitro, and the proportion of Ki67-positive cells in vivo. In contrast, knockdown of RhoG by RNA interference suppressed the proliferation, BrdU incorporation, and the proportion of Ki67-positive cells in NPCs. However, knockdown of RhoG did not affect differentiation and survival of NPC. The RhoG-induced promotion of BrdU incorporation required phosphatidylinositol 3-kinase (PI3K) activity but not the interaction with ELMO. Taken together, these results indicate that RhoG promotes NPC proliferation through PI3K in cortical development.

Neuroscience ◽  
2010 ◽  
Vol 165 (2) ◽  
pp. 515-524 ◽  
Author(s):  
T. Yabe ◽  
H. Hirahara ◽  
N. Harada ◽  
N. Ito ◽  
T. Nagai ◽  
...  

2015 ◽  
Vol 112 (51) ◽  
pp. 15672-15677 ◽  
Author(s):  
J. Gray Camp ◽  
Farhath Badsha ◽  
Marta Florio ◽  
Sabina Kanton ◽  
Tobias Gerber ◽  
...  

Cerebral organoids—3D cultures of human cerebral tissue derived from pluripotent stem cells—have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and previously unidentified interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Wanlong Pan ◽  
Xianshuang Liu ◽  
Xiaoming Zhang ◽  
Xinli Wang ◽  
Jiani Hu ◽  
...  

Background: Molecular mechanisms underlying stroke-induced neurogenesis have not been fully investigated. The microRNA 17-92 cluster (miR17-92) regulates proliferation and differentiation of adult neural progenitor cells (NPCs). The present study investigated whether the miR17-92 cluster in NPCs is required for stroke-induced neurogenesis. Methods and Results: Mice with inducible and conditional knockdown of the miR17-92 cluster in nestin lineage NPCs (nestin-CreER T2 /miR17-92 -/- , 17-92-cKO, n=9) and wild-type litters (WT, n=9) were treated by tamoxifen. Administration of tamoxifen resulted in more than 60% reduction of individual members of the miR-17-92 cluster (miR-17: 1.0 vs 0.4; miR-19a: 1.0 vs 0.3; miR-19b: 1.0 vs 0.2; miR-20a: 1.0 vs 0.4; miR-92a: 1.0 vs 0.4 fold in WT, p<0.05) in NPCs localized to the subventricular zone (SVZ). Two days after termination of tamoxifen treatment, these mice were subjected to permanent right middle cerebral artery occlusion (MCAO) and sacrificed 28 days post-MCAo. Compared to WT mice, 17-92-cKO mice exhibited significant (p<0.05) reduction of proliferation of NPCs measured by the number of Ki67 + cells (226±43 vs 471±100 cells/mm 2 ) and the number of DCX + neuroblasts (11±2% vs 24±4% ) in the ischemic SVZ. Cultured NPCs harvested from ischemic cKO mice showed significant (p<0.05) reduction of BrdU + cells (37±2% vs 61±4% WT , n=3/group), Tuj1 + neuroblasts (5±0.2% vs 9±0.4% ), GFAP + cells (33±3% vs 53±2% ), and NG2 + oligodendrocyte progenitor cells (OPCs, 3±0.1% vs 5±0.5%). These in vivo and in vitro data indicate that reduction of the miR17-92 cluster suppresses stroke-induced neurogenesis and gliogenesis. Western blot analysis showed that miR17-92 cKO significantly (p<0.05) increased and reduced a cytoskeleton-associated protein, Enigma homolog1 (ENH1, 1.6 vs 1.0 fold), and its down-stream transcription factor, inhibitor of differentiation1 (ID1, 1.0 vs 0.6 fold), respectively. ENH1 is a putative target of the miR17-92 cluster. Conclusion: Our data indicate that the miR17-92 cluster in adult nestin lineage NPCs is required for stroke-induced neurongenesis and gliogenesis, and that the miR17-92 cluster possibly targets ENH1/ID1 signaling.


2017 ◽  
Vol 216 (7) ◽  
pp. 1975-1992 ◽  
Author(s):  
Yanxin Li ◽  
Jianwei Jiao

Histone cell cycle regulator (HIRA) is a histone chaperone and has been identified as an epigenetic regulator. Subsequent studies have provided evidence that HIRA plays key roles in embryonic development, but its function during early neurogenesis remains unknown. Here, we demonstrate that HIRA is enriched in neural progenitor cells, and HIRA knockdown reduces neural progenitor cell proliferation, increases terminal mitosis and cell cycle exit, and ultimately results in premature neuronal differentiation. Additionally, we demonstrate that HIRA enhances β-catenin expression by recruiting H3K4 trimethyltransferase Setd1A, which increases H3K4me3 levels and heightens the promoter activity of β-catenin. Significantly, overexpression of HIRA, HIRA N-terminal domain, or β-catenin can override neurogenesis abnormities caused by HIRA defects. Collectively, these data implicate that HIRA, cooperating with Setd1A, modulates β-catenin expression and then regulates neurogenesis. This finding represents a novel epigenetic mechanism underlying the histone code and has profound and lasting implications for diseases and neurobiology.


2019 ◽  
Vol 219 (1) ◽  
Author(s):  
Rui Huang ◽  
De-Juan Yuan ◽  
Shao Li ◽  
Xue-Song Liang ◽  
Yue Gao ◽  
...  

The development of cerebral cortex requires spatially and temporally orchestrated proliferation, migration, and differentiation of neural progenitor cells (NPCs). The molecular mechanisms underlying cortical development are, however, not fully understood. The neural cell adhesion molecule (NCAM) has been suggested to play a role in corticogenesis. Here we show that NCAM is dynamically expressed in the developing cortex. NCAM expression in NPCs is highest in the neurogenic period and declines during the gliogenic period. In mice bearing an NPC-specific NCAM deletion, proliferation of NPCs is reduced, and production of cortical neurons is delayed, while formation of cortical glia is advanced. Mechanistically, NCAM enhances actin polymerization in NPCs by interacting with actin-associated protein profilin2. NCAM-dependent regulation of NPCs is blocked by mutations in the profilin2 binding site. Thus, NCAM plays an essential role in NPC proliferation and fate decision during cortical development by regulating profilin2-dependent actin polymerization.


2020 ◽  
Vol 21 (22) ◽  
pp. 8852
Author(s):  
Rocío Talaverón ◽  
Esperanza R. Matarredona ◽  
Alejandro Herrera ◽  
José M. Medina ◽  
Arantxa Tabernero

Neural progenitor cells (NPCs) are self-renewing cells that give rise to the major cells in the nervous system and are considered to be the possible cell of origin of glioblastoma. The gap junction protein connexin43 (Cx43) is expressed by NPCs, exerting channel-dependent and -independent roles. We focused on one property of Cx43—its ability to inhibit Src, a key protein in brain development and oncogenesis. Because Src inhibition is carried out by the sequence 266–283 of the intracellular C terminus in Cx43, we used a cell-penetrating peptide containing this sequence, TAT-Cx43266–283, to explore its effects on postnatal subventricular zone NPCs. Our results show that TAT-Cx43266–283 inhibited Src activity and reduced NPC proliferation and survival promoted by epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). In differentiation conditions, TAT-Cx43266–283 increased astrocyte differentiation at the expense of neuronal differentiation, which coincided with a reduction in Src activity and β-catenin expression. We propose that Cx43, through the region 266–283, reduces Src activity, leading to disruption of EGF and FGF-2 signaling and to down-regulation of β-catenin with effects on proliferation and differentiation. Our data indicate that the inhibition of Src might contribute to the complex role of Cx43 in NPCs and open new opportunities for further research in gliomagenesis.


Sign in / Sign up

Export Citation Format

Share Document