progenitor cell proliferation
Recently Published Documents


TOTAL DOCUMENTS

457
(FIVE YEARS 85)

H-INDEX

63
(FIVE YEARS 6)

2022 ◽  
Vol 3 (1) ◽  
pp. 101065
Author(s):  
Fernando Janczur Velloso ◽  
Ekta Kumari ◽  
Krista D. Buono ◽  
Michelle J. Frondelli ◽  
Steven W. Levison

2022 ◽  
Vol 8 (2) ◽  
Author(s):  
Kaviya Chinnappa ◽  
Adrián Cárdenas ◽  
Anna Prieto-Colomina ◽  
Ana Villalba ◽  
Ángel Márquez-Galera ◽  
...  

Expression of miR-3607 in embryonic mammalian cerebral cortex was lost in rodents, limiting progenitor cell proliferation.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Victoria Honnell ◽  
Jackie L. Norrie ◽  
Anand G. Patel ◽  
Cody Ramirez ◽  
Jiakun Zhang ◽  
...  

AbstractSuper-enhancers are expansive regions of genomic DNA comprised of multiple putative enhancers that contribute to the dynamic gene expression patterns during development. This is particularly important in neurogenesis because many essential transcription factors have complex developmental stage– and cell–type specific expression patterns across the central nervous system. In the developing retina, Vsx2 is expressed in retinal progenitor cells and is maintained in differentiated bipolar neurons and Müller glia. A single super-enhancer controls this complex and dynamic pattern of expression. Here we show that deletion of one region disrupts retinal progenitor cell proliferation but does not affect cell fate specification. The deletion of another region has no effect on retinal progenitor cell proliferation but instead leads to a complete loss of bipolar neurons. This prototypical super-enhancer may serve as a model for dissecting the complex gene expression patterns for neurogenic transcription factors during development. Moreover, it provides a unique opportunity to alter expression of individual transcription factors in particular cell types at specific stages of development. This provides a deeper understanding of function that cannot be achieved with traditional knockout mouse approaches.


2021 ◽  
Vol 23 (1) ◽  
pp. 229
Author(s):  
Arthur H. Cheng ◽  
Samuel W. Fung ◽  
Sara Hegazi ◽  
Osama Hasan Mustafa Hasan Abdalla ◽  
Hai-Ying Mary Cheng

In mammals, the hypothalamic suprachiasmatic nucleus (SCN) functions as the central circadian pacemaker, orchestrating behavioral and physiological rhythms in alignment to the environmental light/dark cycle. The neurons that comprise the SCN are anatomically and functionally heterogeneous, but despite their physiological importance, little is known about the pathways that guide their specification and differentiation. Here, we report that the stem/progenitor cell transcription factor, Sex determining region Y-box 2 (Sox2), is required in the embryonic SCN to control the expression of SCN-enriched neuropeptides and transcription factors. Ablation of Sox2 in the developing SCN leads to downregulation of circadian neuropeptides as early as embryonic day (E) 15.5, followed by a decrease in the expression of two transcription factors involved in SCN development, Lhx1 and Six6, in neonates. Thymidine analog-retention assays revealed that Sox2 deficiency contributed to reduced survival of SCN neurons during the postnatal period of cell clearance, but did not affect progenitor cell proliferation or SCN specification. Our results identify SOX2 as an essential transcription factor for the proper differentiation and survival of neurons within the developing SCN.


Author(s):  
Ayesha M. Yusuf ◽  
Rizwan Qaisar ◽  
Abaher O. Al‐Tamimi ◽  
Manju Nidagodu Jayakumar ◽  
James R. Woodgett ◽  
...  

2021 ◽  
Author(s):  
Chi Sun ◽  
Xiaodong Zhang ◽  
Philip Andrew Ruzycki ◽  
Shiming Chen

MLL1 (KMT2A) and MLL2 (KMT2B) are homologous members of the mixed-lineage leukemia (MLL) family of histone methyltransferases involved in epigenomic transcriptional regulation. Their sequence variants have been associated with neurological and psychological disorders, but little is known about their roles and mechanism of action in CNS development. Using mouse retina as a model, we previously reported the roles of MLL1 in retinal neurogenesis and horizontal cell maintenance. Here we determine roles of MLL2 and MLL1/MLL2 together in retinal development using conditional knockout (CKO) mice. Deleting Mll2 from Chx10+ retinal progenitors resulted in a similar phenotype as Mll1 CKO, but removal of both alleles produced much more severe deficits than each single CKO: 1-month double CKO mutants displayed null light responses in electroretinogram; thin retinal layers, including shorter photoreceptor outer segments with impaired phototransduction gene expression; and reduced numbers of M-cones, horizontal and amacrine neurons, followed by fast retinal degeneration. Despite moderately reduced progenitor cell proliferation at P0, the neurogenic capacity was largely maintained in double CKO mutants. However, upregulated apoptosis and reactive gliosis were detected during postnatal retinal development. Finally, the removal of both MLLs in fated rods produced a normal phenotype, but the CKO in M-cones impaired M-cone function and survival, indicating both cell non-autonomous and autonomous mechanisms. Altogether, our results suggest that MLL1/MLL2 play redundant roles in maintaining specific retinal neurons after cell fate specification and are essential for establishing functional neural networks.


Author(s):  
Ashley C. Kramer ◽  
Katherine Gurdziel ◽  
Ryan Thummel

Following photoreceptors ablation by intense light exposure, adult zebrafish are capable of complete regeneration due to the ability of their Müller glia (MG) to re-enter the cell cycle, creating progenitors that differentiate into new photoreceptors. The majority of previous reports on retinal regeneration focused on the first few days of the regenerative response, which include MG cell-cycle re-entry and progenitor cell proliferation. With this study, we analyzed the full 28-day time-course of regeneration by pairing a detailed morphological/immunological analysis with RNA-seq transcriptional profiling at 8 key time points during retinal regeneration. We observed several novel findings. First, we provide evidence for two separate peaks of MG gliosis, with the secondary gliotic peak occurring after MG cell-cycle re-entry. Second, we highlight a distinct transcriptional shift between 5- and 10-days post lesion that highlights the transition from progenitor proliferation to differentiation into new photoreceptors. Third, we show distinctly different patterns of transcriptional recovery of the photoreceptor opsins at 28 days post lesion. Finally, using differential gene expression analysis, we revealed that the established functional recovery of the retina at 28 days post lesion does not, in fact, return to an undamaged transcriptional state, potentially redefining what the field considers complete regeneration. Together, to our knowledge, this work represents the first histological and transcriptomic map of a 28-day time-course of retinal regeneration in adult zebrafish.


2021 ◽  
Author(s):  
Yongqiang Wu ◽  
Yanzi Zhong ◽  
Xufeng Liao ◽  
Xiangguang Miao ◽  
Jianbo Yu ◽  
...  

Abstract Background: Abnormal white matter is a common neurobiological change in bipolar disorder, and dysregulation of myelination in oligodendrocytes is the cause. Transmembrane protein 108 (Tmem108), as a susceptible gene of bipolar disorder, is expressed higher in oligodendrocyte lineage cells than any other lineage cells in the central nervous system. Moreover, Tmem108 mutant mice exhibit mania-like behaviors, belonging to one of the signs of bipolar disorder. However, it is unknown whether Tmem108 regulates myelination of the oligodendrocytes.Results: Tmem108 expression in the corpus callosum decreased with the development, and hypermyelination of the corpus callosum was found in Tmem108 mutant mice, accompanying high expression of myelin basic protein. Strikingly, both oligodendrocyte progenitor cell proliferation and oligodendrocyte myelination were enhanced in the mutant mice. Furthermore, the mutant mice exhibited mania-like behavior after acute restraint stress and were susceptible to drug-induced epilepsy. Conclusions: Tmem108 inhibited oligodendrocyte progenitor cell proliferation and mitigated oligodendrocyte maturation in the corpus callosum, which may also provide a new role of Tmem108 involving bipolar disorder pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document